
 

 

Photo source: Shutterstock—biDaala_studio (left); Semisatch (center); Power Up (right) 

This publication was made possible through funding provided by the United Soybean Board (“USB”). As stipulated in the Soybean Promotion, Research, 

and Consumer Information Act, USDA’s Agricultural Marketing Service (“AMS”) has oversight responsibilities for USB. AMS prohibits the use of USB’s 

funds to influence legislation and/or to influence governmental policy or action. Any opinions, findings, conclusions, or recommendations expressed in 

this publication are those of the author(s) and do not necessarily reflect the views of USB, USDA, and/or AMS. 

 

 
 

Enabling Open-source Data Networks in Public Agricultural 

Research 
 

Authors: Sylvie Brouder (Chair) Alison Eagle Naomi K. Fukagawa John McNamara (retired) 

 Purdue University Environmental USDA–ARS Washington State 

 West Lafayette, Indiana      Defense Fund Beltsville, Maryland      University 

  Raleigh,  Pullman 

  North Carolina 

 Seth Murray Cynthia Parr Nicolas Tremblay 
 Texas A&M University USDA–ARS Agriculture and Agri-Food Canada 

 College Station Beltsville, Maryland St-Jean-sur-Richelieu, Canada  

Reviewers: Marianne Stowell Bracke Paul Fixen (retired) Jeffrey Volenec 

 Whitworth University International Plant Nutrition Institute Purdue University 

 Spokane, Washington Brookings, South Dakota West Lafayette, Indiana 

CAST Liaison: Drew Lyon 

  Washington State University 

  Pullman 

 

 

 

 

 

 

 

 

Abstract 

The next generation of agricultural problem solving will require big science and linkages 

forged across data sets and disciplines. Currently, a lack of data sharing and data accessibility 

is a major barrier for making better decisions in agriculture. Business cases for data-sharing 

infrastructure include that pooling datasets and computational power efficiently extends 

sparse data resources, facilitates new discovery, derives better answers and decision making, 

lowers the barrier of entry, and ensures scientific reproducibility so that U.S. production 

agriculture can compete sustainably.  

Immediate imperatives for facilitating data sharing to fully realize open access to public 

agricultural research are the following: (1) development and implementation of best practices 

for data—workflows and standards—in all future federally funded projects; (2) incentives and 

mechanisms for making available data not represented in the peer-review literature (grey and  
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dark data); (3) coordination among existing and emerging data initiatives, networks, and 

repositories; and (4) dedicated and sustainable infrastructure—hardware, software, and 

human resources—to curate, preserve, and add value to data beyond the primary use for 

which they were collected.  

Agriculture’s pathway forward requires dedicated partnering among domain researchers, data 

scientists, science administrators and agencies, professional societies, and private publishing 

entities. To simultaneously achieve sustained and equitable data access, the authors suggest 

the most promise lies with a novel business model in which funding agencies pay directly for 

stewardship in proportion to grant volume. Further, they propose four major institutional 

strategies to advance data-driven research in agriculture: bridging gaps, reorienting 

institutions, leveraging assets, and connecting feedbacks. Teams must bridge expertise gaps 

through meaningful collaborations between agricultural researchers and data scientists. 

Institutions will need to reorient to prioritize team science and data sharing over smaller scale, 

individual efforts and to infuse an understanding of data sciences into curricula and learning 

outcomes. Initiatives to leverage assets should focus on surfacing grey/dark data not 

represented by peer-review publication, including high-value legacy datasets for which time 

and cost prohibit replication. Finally, for research data to achieve and maintain public value, 

it must connect feedbacks to ensure data are useful and useable for informing the end-user 

“apps” designed to enhance and secure our current food supply and address environmental 

and social challenges. 

Introduction 

Research has created the most efficient food production system in history through accrual of 

massive amounts of data, information, and knowledge. The amount of research data collected 

to date, however, pales when compared to current ability to generate or compile data using an 

array of digital tools. Rapidly accruing datasets, each containing ever-larger quantities of 

data, have led to concepts such as “big data,” “data sciences,” and “data analytics.” Yet, with 

much research data remaining unpublished, only partially available, or incompletely 

described, policy decisions and program design may lean disproportionately on expert 

opinion and partial information. The complex interconnections between agriculture, the 

natural environment, and social and physical well-being increase the need for researchers to 

use the full suite of data, but, for this to happen, access to data and analytical tools must be 

relatively unimpeded and open to all working within the scientific, nongovernmental 

organization, government, and business fields (Figure 1; Textbox 1). The idea that 

information, including all data, collected from publicly funded scientific activities belongs to 

the public and should be freely available and usable motivates this commentary.  

 

For agriculture, the scope of opportunities and challenges linked to data is hard to overstate. 

Recent analyses suggest scientists have reached near universal agreement that data sharing 

has value and advances research toward solutions to complex problems (e.g., Kim and 

Stanton [2016] and references cited therein). Yet, current approaches to research design and 

data collection are rarely standardized across studies, even within narrowly focused 

disciplines. Data access and use by others remains dependent on individual agreements, 

facilitated by one-time trial-and-error solutions for data transfer (Cragin et al. 2010); a lack of 

funding for synthesis research using aggregated data remains a significant barrier. Issues of 

data privacy, security, and intellectual property further constrain nascent data-sharing efforts, 

especially those in which public-private partnerships are involved. The underlying problem is 

a continued absence of a coordinated infrastructure of equipment and people to support 

agricultural research data sharing and its routine synthesis into practice and policy.  

In the United States, this infrastructure deficit threatens agriculture’s ability to comply with 

“open access” mandates (Holdren 2013) and proposed legislation. The Federal Research 

Public Access Act (FRPAA 2012) succeeded by the Fair Access to Science Technology 

Research Act (FASTR 2017) require funding agencies to develop public access policies, 

reflecting increased public pressure for transparency in science use. While FRPAA guidelines 

do not define “free online public access,” most federal funding agencies have interpreted open  
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access to be inclusive of all nonproprietary, nonsensitive data collected in their sponsored 

research. Free and open access to information generated by federal funding is clearly in the 

spirit of the original legislation creating the U.S. Department of Agriculture (USDA) and the 

land-grant university system to develop and apply scientific knowledge in food production for 

the betterment of the U.S. population. Public expectations for accessing and using agricultural 

science to make informed choices span a myriad of health, land management, and lifestyle 

issues, from understanding food’s nutritional value for diet modification to vastly improving 

application of precision technologies for profitable crop and animal production and 

environmental protection.  

 

 
Figure 1. The data ecosystem for team science (see Textbox 1).  

 

 

 

 

 

 

 

 

 

 

 

The purpose of this commentary is to document need for and anticipated benefits of 

developing data-sharing standards, incentivizing researchers to share data, and building a 

data-sharing infrastructure within agricultural research. The authors present the factors 

contributing to the current system of agricultural research that has fostered ambivalence 

toward data sharing; briefly review the success of data-sharing examples from other domains 

that offer promise for advancing agricultural research; and describe the advantages and 

shortcomings of emerging data-sharing platforms, networks, and repositories intended to 

facilitate data sharing in agriculture. Although they focus on accessing and using the full 

wealth of data generated by research, they realize impact from this effort also requires 

research in food production to de-emphasize smaller-scale, individual-effort studies and  

Textbox 1: The Data Ecosystem for Team Science: Key attributes for data sharing 

 All data are collected a priori anticipating reuse and in accordance with FAIR principles.  

 Data synthesized in journal articles are published with and referenced in the article.  

 All (unpublished and published) project data are FAIR (findable, accessible, interoperable, and 

reusable), residing in either disciplinary or institutional repositories and/or in a federal 

“knowledgebase.” 

 A newly created federal knowledgebase provides repository function with expert services to 

enhance data collections and their reuse.  

 Dedicated knowledgebase experts collaborate with research teams and stakeholders to develop 

high-value data products including fusions from disparate repositories and knowledgebases 

(e.g., merge weather, soil, and agronomic data streams). 

 Stakeholders in the data value chain (extension specialists, entrepreneurs, farmers, etc.) access 

knowledge from journals and data from the knowledgebase for innovation and new knowledge 

creation.  
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pursue larger efforts integrating social, economic, and environmental components. Thus, the 

ultimate goal is to advance the conversation among agricultural science partners to create a 

system conducive to data sharing and the team science that are needed to address the 

complex, “grand-challenge” questions in food systems (e.g., Bennett and Balvanera 2007; 

Daar et al. 2007; Mueller et al. 2012; Robertson and Swinton 2005). The authors highlight 

key strategies, roles, and responsibilities of partners in agriculture’s science and data 

enterprise, and they discuss the business case for data sharing as well as ingredients essential 

to data preservation and curation. 

Justification: Data-driven Research Approaches for Agriculture 

To date, agricultural research has generally been pursued as incremental aggregations of 

“small science,” hypothesis-driven research led by single researchers or small teams 

generating and analyzing their own results (Cragin et al. 2010). By 1935, Fisher had brought 

coherence to an ad hoc mixture of statistical ideas, exemplified by the work conducted at 

Rothamsted Experimental Station and rapidly emulated elsewhere (Speed 1992). Thereafter, 

Fisherian statistics dominated 20th-century thinking and methodology in agricultural research 

and many other disciplines (Efron 1998), embedding into curricula and scientific practice the 

principles of replication, randomization, analysis of variance, and elimination of 

heterogeneity with local control (Box 1980; Speed 1992). The scientific reward system in 

agriculture co-evolved with the small science model and has favored—via granting, 

promotion, and tenure systems—the researcher who contributes excellent, albeit modest and 

fragmented, knowledge. Although past research has clearly advanced agricultural 

productivity, some question future contributions of this small science approach (Figure 2; 

Textbox 2). For example, McNamara, Hanigan, and White (2016) suggested for livestock 

research that traditional approaches resulted in studies with narrow foci and undefinable 

global applicability. 

Unavoidable tensions and trade-offs in goals for system performance are hallmarks of 

agricultural “grand challenges.” Reconciling productivity and profitability with 

environmental integrity has long been considered tantamount to achieving sustainability 

(Davis et al. 2012; Robertson and Swinton 2005); yet among the limitations of agriculture’s 

small science approach is an inability to characterize such trade-offs (Caron, Biénabe, and 

Hainzelin 2014). Further, broader challenges concerning climate change, global hunger, food 

security, and societal sustainability and development goals all encompass agriculture 

(Campbell et al. 2017; Dobermann et al. 2013; Griggs et al. 2013). The complexity of human 

nutrition, natural resource sustainability, and socioeconomic problems linked to the global 

agricultural sector requires convergence across historically discrete disciplines and greater 

collaboration. The National Academies “Science Breakthroughs” report (2018a) highlights 

both systems research and integration of data sciences among major strategies for agriculture. 

A large part of future scientific inquiry may entail accessing a wealth of resources across 

different subject areas (Eisenhardt, Graebner, and Sonenshein 2016), requiring that scientists 

learn how to use data available through unstructured sources; problem solutions will entail 

complex optimizations with inherent uncertainties (van Mil et al. 2014). The envisioned 

approach is dramatically different from an agronomist simply asking an economist or other 

social scientist to play a cursory role on a research team. 

Concomitant with agriculture’s need for new, data-rich approaches to advance research on 

complex phenomena is a public mandate for credible solutions to be transparent to the 

underlying science (National Academies of Sciences, Engineering, and Medicine 2018b). 

Transparency is a core tenet of scientific endeavor and can be achieved through adhering to 

methodological standards that ensure repeatability and reproducibility, a “minimum necessary 

condition for a finding to be believable and informative” (Bollen et al. 2015). Recently, 

science’s commitment to these standards has been called into question by surveys citing 

dismal statistics for reproducibility of results (e.g., 40 and 70% failure in trying to reproduce 

one’s own or another researcher’s results, respectively) (Baker 2016). The biomedical and 

psychological literature suggest an apparent crisis in reproducibility (Harris 2017; Jarvis and  
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Williams 2016; Open Science Collaboration 2015; Pashler and Wagenmakers 2012; Stokstad 

2018).  

 

Figure 2. The small science environment (see Textbox 2). 

 

Crisis drivers include small study sizes, publication bias, and inaccessibility of original data. 

Professional pressures to publish have both decreased willingness to share data (Tenopir et al. 

2015) and increased the prevalence of smaller studies, which can lessen the likelihood of 

finding true, nonnull effects (e.g., small studies with low statistical power) (Button et al. 

2013). Simultaneously, journal bias toward publishing positive results (Fanelli 2012) has 

distorted the foundations for evidence-based practice by excluding reports of negative or null 

results. Although acknowledging the multitude of factors that can contribute to irreproducible 

results, solutions consistently stress complete reporting inclusive of data access (Begley and 

Ioannidis 2015; Button et al. 2013; Goodman, Fanelli, and Ioannidis 2016). 

Agricultural research has not yet been highlighted for widespread procedural lapses in 

reproducibility, but the contributing factors exist and a culture for valuing open data has yet to 
be established. Further, publication in the less rigorous grey literature (e.g., newsletters, 

reports, conference proceedings) is common when applied research is done to test or adapt the 

peer-review literature result for local considerations or constraints. Grey literature exacerbates 

transparency and reproducibility problems because it is generally harder to find and less  

 

Textbox 2: The Small Science Environment: Impediments to science without data sharing 

 Data in an article is reproducible but may not be “open” (behind subscription paywalls). 

 There are no meaningful linkages of articles and journals across disciplines and researchers. 

 Research is not transdisciplinary and, thus, insufficient for “grand challenge” questions that 

interest donors and the public. 

 Peer-reviewed journals emphasize novel results, creating bias in the scientific record. 

 Unpublished data are inaccessible and often unrecoverable, representing lost research 

investment. 

 Policy and recommendation developers pay to access fragmented, partial, and/or biased 

evidence to inform practice. 
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rigorous, and persistence of both results and the data in the scientific record is notoriously 

poor. For reproducible science, Munafö and colleagues (2017) enumerate many advantages to 

data sharing in public repositories, stressing not only the transparency and openness essential 

to maintaining public confidence in science, but also the efficiencies that can accrue. Few 

expect funding allocations to agricultural research to increase dramatically in the coming 

years, making it even more imperative to improve efficiency of data collection and the use 

and reuse of existing data (see EPAR [2017] and USDA–ERS [2018] for trends in public and 

private support). The emergence of a host of new tools and technologies for e-sciences is 

potentially serendipitous for agriculture because they offer not only opportunity for higher-

impact synthesis research, but also avenues for improving the overall efficiency, including 

creating big data and big science out of initially small efforts. 
 

In sum, transparent disclosure of methods and results, sharing of research materials and 

nonsensitive raw data, and collaboration to increase power and replicate findings will enhance 

reliability of many fields and increase public trust in and use of science. In agriculture, 

standardizing, organizing, and making publicly available the wide variety of specialty 

datasets produced in the numerous, small independent studies that typify publicly funded 

research is a critical first step to capitalizing on the opportunities and efficiencies afforded by 

e-sciences. An immediate benefit of fluent access to already-existing datasets is facilitation of 

meta-analyses, a powerful statistical approach for synthesizing multiple, independent studies 

to determine a more complete understanding of experimental results (Ehm 2016). It has been 

used routinely by medicine, education, and other disciplines to translate science into practice; 

results are generally considered robust, although outcomes can be biased by researcher 

decisions and judgement calls (de Vrieze 2018). Artificial intelligence also holds great 

promise for synthesizing agricultural data. Methods such as machine learning are tolerant to 

complex data characteristics (e.g., nonlinearity and outliers) and applicable to a wider range 

of tasks, including pattern detection and information extraction from raw data even if the 

underlying data model is unknown. Machine learning approaches can automatically 

incorporate new information, but any new data must be prepared for interoperability. As 

articulated by Wilkinson and colleagues (2016), the cornerstone principles for data in e-

sciences are FAIR: data must be findable, accessible, interoperable, and reusable (Figure 3). 

 

 

Figure 3. The FAIR principles (Wilkinson et al. 2016) 

 

Transparent disclosure 

of methods and results, 

sharing of research 

materials and 

nonsensitive raw data, 

and collaboration to 

increase power and 

replicate findings will 

enhance reliability of 

many fields and increase 

public trust in and use of 

science. 

Artificial intelligence 

also holds great promise 

for synthesizing 

agricultural data. 



CAST Commentary     Enabling Open-source Data Networks in Public Agricultural Research 7 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Current Landscape for Agricultural Data and Data Sharing 

Although agricultural research has been slow in developing e-infrastructure and mechanisms 

that promote efficiencies and transparency via open data, examples from other domains 

demonstrate that open data can catalyze new discoveries, decisions, and economic growth. 

The Cochrane Collaborative (Cochrane n.d.) is a global network of 10,000 members 

dedicated to improving human health outcomes through rigorous synthesis of basic medical 

and clinical research. The network’s foundation is an open-access database of systematic 

reviews (SRs); the accompanying guidance on how to perform these reviews has been 

adopted by other domains (e.g., Collaboration for Environmental Evidence [2018]). With 

strong encouragement from the National Academy of Sciences, the Integrated Risk 

Information System of the Environmental Protection Agency recently adopted SR as a core 

methodology to create efficiencies and improve timeliness and responsiveness in 

environmental health assessment (USEPA 2017). 

Reports in the agricultural literature have repeatedly highlighted the potential for such 

infrastructure to improve the quality of the primary agricultural literature and its use in 

evidence-based decision making (Brouder and Gomez-Macpherson 2014; Eagle et al. 2017; 

Philibert, Loyce, and Makowski 2012). In neurosciences, richly diverse and important but 

heterogeneous and small datasets continue to be produced by individual researchers, leading 

to the development of infrastructure and best practices for data sharing and aggregating small 

data into bigger data. Neuroscience case studies provide proof-of-concept that data sharing 

across small, disparate research programs can successfully address larger questions and yield 

the advantages of big science approaches (Ferguson et al. 2014). Finally, numerous, large, 

data-sharing efforts initially developed for other, broader purposes are already bringing 

significant ancillary benefits to agricultural research. The NCBI (Textbox 3) has supported 

exponential growth and use of genomics inclusive of agricultural plant and animal objectives, 

whereas the National Oceanic and Atmospheric Administration has facilitated the integration 

of weather data into a myriad of human activities, including on-farm applications (“apps”) for 

yield forecasting and management decision making. 

 

 
Moving agriculture from its present culture of short data life cycles and limited sharing to one 

valuing open data and data reuse requires development and implementation of best practices 

that ensure readability over time and between disciplines. The Wilkinson and colleagues 

(2016) global call for researchers and publishers to adopt FAIR (Figure 3) principles is 

specifically targeted at the disparate but important datasets that are not accommodated by 

existing well-curated, specialty repositories such as the NCBI. These principles emphasize 

consistent use of appropriate metadata and free, universally implementable protocols to 
permit authentication. The intent of FAIR and related initiatives is to set a high bar for 

scientific data stewardship and sharing, to facilitate transparency, and to spur innovation and 

impact. Machines must be able to assist in finding, obtaining, and subsequently using relevant 

data. This, in turn, requires the re-imagination of data workflows and storage solutions that 

are software agnostic. Certainly it will be a challenge for agriculture to move toward common  

Textbox 3: The National Center for Biotechnology Information (NCBI) has democratized 

biotechnology innovation with data access. 

Well-supported public federal data repositories have catalyzed and democratized U.S. innovation and 

economic development. A prime example is the NCBI, a division of the National Library of Medicine 

established by congress in 1988. The NCBI provides a one-stop database for genomic sequence data, 

including innovative search and analysis tools, as well as an index database to relevant biotechnology 

and health science information. Often a mandatory repository for data collected in publicly funded 

genomics research, the NCBI has catalyzed diverse fields of research, making critical genomics 

information easy to find and freely available. Although the NCBI supports petabytes of agricultural 

species genomic data, it lacks capability or mandate to serve most other subdomains of agriculture. 

Thus, although the NCBI hosts a database of Genotypes and Phenotypes (dbGaP) for studies on 

humans, it offers no similar function for linking agricultural genomic data to the field studies that 

document phenotypes as a function of management and environment. 
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metadata and data standards and generic workflows, but new organizations, infrastructures, 

and services are emerging with potential to streamline and professionalize the data 

management life cycle (Textbox 4). A primary limitation common to these entities, however, 

is the ability to maintain effective communication and engagement in a widely dispersed, fast-

moving field. 

 

 

Along with this array of alliances, coalitions, and networks, an ecosystem of repositories and 

aggregators is emerging with the intent of fostering FAIR compliance; these also are not 

without limitations. Agricultural research data can be accessed in a large number of domain 

databases (e.g., MaizeDB, Soybase), as well as in general purpose publishing repositories 

(e.g., Dryad [Dryad 2018]) and institutional research repositories (e.g., PURR n.d.; Texas 

A&M University Libraries 2016). These platforms make data available for free and are 

tailored to the needs of their immediate stakeholders. They have the potential to contribute to 

a data-driven future where data can be found, integrated, and used easily regardless of source. 

The sheer number and variety of these platforms poses a challenge for a coordinated 

landscape (Parr, Antognoli, and Sears 2017), however, and each faces sustainability issues 

that constrain them in achieving their full potential, including universal interoperability. 

Domain-relevant aggregators such as DataONE (Textbox 4) serve a niche but do not yet 

explicitly serve core agricultural fields such as agronomy, crop genetics, or agricultural 

economics. Ag Data Commons (USDA–NAL n.d.) is emerging as a central catalog to a wide 

variety of USDA-supported research data. It harvests relevant metadata from many other 

repositories, including both scattered domain-specific sources and more general sources 

filtered to agricultural results. It also provides a repository for selected data with no domain-

specific home. Regardless, decreasing the variety of and increasing the depth of data 

descriptions remain critical needs. 

A key to FAIR data is the use of metadata and data standards. Agricultural standards are 

under active development. Several International Organization for Standardization (ISO) 

standards are relevant, particularly ISO 19115 (ISO n.d.), now endorsed for federal geospatial 

data (FGDC n.d.). Industry standards for agricultural equipment data are emerging at 

AgGateway (AgGateway 2018). For the Agricultural Model Intercomparison and 

Improvement Project (AgMIP 2014), crop model datasets were harmonized using the 

vocabularies and standards developed by the International Consortium for Agricultural  

Textbox 4: Examples of emerging alliances, coalitions, and networks that may help agriculture with 

implementation of FAIR principles: 

The Research Data Alliance coordinates efforts of a broad array of data managers, information 

scientists, and data policymakers (Berman, Wilkinson, and Wood 2014). Its Interest Group on 

Agricultural Data oversees work on best practices, interoperable data standards, on-farm data sharing, 

and agrisemantics (Research Data Alliance n.d.).  

The Ag Data Coalition (Agricultural Data Coalition n.d.) and the International Agroinformatics 

Alliance (Gustafson et al. 2017) are partnerships working to allow farmers, university researchers, and 

industry to exchange data safely and securely for analysis and innovation.  

DataONE (DataONE n.d.) is a distributed network focused on environmental science, with significant 

coverage of agricultural research areas; it promotes best practices in data management via educational 

tools.  

AgBioData (AgBioData 2017–2019) is a coalition of major agricultural genomics platform managers 

seeking to promote best practices in genomics, genetics, and breeding data.  

CyVerse (formally iPlant Collaborative) (CyVerse n.d.) provides resources for data management and 

analysis emphasizing computational infrastructure for huge, complex datasets. 

GODAN (GODAN n.d.) supports global efforts in open data by building high-level policy and 

public/private institutional support. 
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Systems Application. Their data dictionary describes terms and units for data related to field 

crop experiments (White et al. 2013); this standard allowed AgMIP tools to be rapidly 

developed to translate data so that it could be used in ensemble modeling (Rosenzweig et al. 

2013). The proliferation of agricultural ontologies and thesauri is described on the 

Agrisemantics website (Agrisemantics n.d.). Pruning and mapping across these ontologies is 

underway. For example, the global multilingual agricultural concept scheme combines the 

most useful terms from three broadly used sources (Baker, Caracciolo, and Arnaud 2016). 

These standards have potential for vastly improving discoverability and integration across 

agricultural data, leading to larger and more interdisciplinary discoveries and innovations 

(Devare et al. 2016). Broad adoption by existing infrastructures for bench and field 

researchers, however, remains a challenge. More engagement in standards development by 

academic, federal, and nonprofit researchers is needed. 

Pathways Forward: Strategies, Partnerships, and Business Models 

Designing a singular system or mechanism for sharing agricultural data seems inherently 

untenable given the array of initiatives currently underway; distributed but interoperable 

infrastructure likely holds more promise for linking databases. Additionally, the pathway 

forward must include assurances for security and information quality as well as incentives to 

publish both confirmatory studies and data in its entirety (i.e., individual replicates) in order 

to identify false positives and strengthen the characterization of true effects. Agricultural 

subject experts must solicit partnerships with data scientists. Numerous recent surveys and 

analyses of data-sharing behaviors in science provide insights into creation of the 

environment conducive of data-driven, actionable solutions to complex problems (Kim and 

Stanton 2016; Tenopir et al. 2015). Critical attributes are functional, low-barrier solutions, 

including desktop tools, for individuals to manage their data in keeping with FAIR principles; 

the infrastructure, resources, and access to ongoing support to permit real-time FAIR 

compliance and data curation and preservation; and a system of rewards to incentivize team 

science and data sharing (Figure 4).  

Strategies for Transportation to Team Science and Open Data 

Simultaneous pursuit of four strategies will facilitate agriculture’s pathway forward into data-

driven research; these entail bridging gaps, reorienting institutions, leveraging assets, and 

connecting feedbacks (Figure 4).  

Bridging Gaps with Novel Teams and Data Sciences 

Dunn and Bourne (2017) identify fostering collaborations with data scientists as a key 

strategy for building the biomedical data science workforce. In agriculture, data scientists will 

be critical to successful translation of new knowledge or innovative products from basic 

research into commercial applications and policies. Researchers and decision makers 

typically have domain expertise but lack the data-science skills essential for maintaining and 

making sense of data. Partnering with data scientists to build workflows, analysis tools, and 

education materials promises to improve both the rate and efficiency of discovery. Once 

available in accessible, machine-readable forms, scholarly articles and associated data or even 

unanalyzed data can be mined for trends, filtered for promising ideas, and translated or 

visualized for end users (Porcel et al. 2012). Data scientists can provide guidance on the 

correct use of meta-analytical tools to make sense of conflicting studies and harness artificial 

intelligence and machine learning to explore complex relationships within large and 

heterogeneous data. Initiatives such as Ag Data Commons and CyVerse provide both tools 

and infrastructure for specific analyses. Yet the expertise barrier remains high, and the overall 

process of making decisions from big and open data at the farm, consumer, and policy levels 
requires substantial further investments and democratization. In regard to artificial 

intelligence, approaches and tools currently being developed by the Defense Advanced 

Research Project Agency (DARPA) (Shen n.d.) are being piloted on some agricultural 

questions. Ownership and development after DARPA by the USDA will require additional 

resources to create “low-barrier” solutions. Data scientists can also contribute to improving  
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interoperability (data and coding) and establishment of standards for models and applications; 

they are well positioned to improve educational technology to reduce training lags.  

 

 

Figure 4. Creating the data ecosystem for public agricultural research. 
 

Institutional Facilitation of Team Science and Data Sharing 

Institutions will need to reorient to support team science and data sharing. Undergraduate and 

graduate curricula must include content that ensures some understanding of data sciences and 

their importance and use in food systems research. Each individual will not need to be a “data 

scientist,” but all will need a data sciences foundation such that, irrespective of their 

component of focus, they can recognize how it fits with the system as a whole (Dunn and 

Bourne 2017); they will need a thorough grounding in FAIR principles, tools for their 

application, and the ethics of implementing open data. As forecast for the workforce in 

general (BHEF 2017), agricultural domain specialists with computational, mathematical, 

and/or statistical skills to help manage and use the large body of data generated by research 

teams will be in high demand, with many positions anticipated at the bachelor’s and master’s 

degree levels.  

Any new curriculum must be seamlessly integrated with FAIR infrastructure 

(workflows, relevant ontologies, standards, repositories, etc.), supporting resource  

Data scientists can . . . 
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investments must be adequate, and the professional reward system must be altered to 

incentivize FAIR implementation and team participation. With few exceptions, university 

researchers are measured and rewarded on a small array of individual metrics: amount of 

funding garnered, number of papers published and the perceived quality of the journal, and 

the number and subsequent success of graduate students. In their analysis of institutional and 

individual factors affecting data sharing, Kim and Stanton (2016) found normative pressure 

within a discipline and perceived career benefit to have a positive association with data-

sharing behaviors. A culture of scholarship for data as a product of scientific endeavor and 

mechanisms to acknowledge the broader array of activities associated with team science must 

be developed and infused into the assessment system.  

Leveraging Assets and Surfacing Grey/Dark Data 

A data-sharing infrastructure would accommodate data not currently represented by peer-

review publications. This can increase the reach of research results beyond a given region or 

even the initial research question and, perhaps more importantly, decrease publication bias in 

meta-analysis. Existing, successful efforts in data sharing should be examined for insights and 

mechanisms to emulate and replicate. Several of the Coordinated Agricultural Projects 

(CAPs) funded by the USDA’s Agriculture and Food Research Initiative (AFRI) invested 

significantly in data-sharing infrastructure to facilitate results integration across teams. For 

example, the Iowa State University-led Corn CAP compiled standardized crop, soil, and 

environmental outcome data from more than 30 different research sites over five years, 

publishing the dataset in the National Agricultural Libraries repository (Abendroth et al. 

2017).  

Current grey literature and data not associated with a peer-review publication will require 

mechanisms to ensure visibility and validity. Simply identifying the existence of documents 

in grey literature is difficult (Debachere 1995). Permitting formal data publication—inclusive 

of assigning a digital object identifier—out of repositories (PURR n.d.; USDA–NAL n.d.) is a 

strategy that can meet open data requirements of funding organizations but may be 

insufficient for broader discovery objectives. Indeed, availability of repositories alone has not 

been identified as encouraging data sharing (Kim and Stanton 2016). Sansone and colleagues 

(2017) describe a data tag suite to enable findability and accessibility over 60 biomedical data 

sources as well as a general architecture that could be applied to the agricultural data pipeline. 

Van Tuyl and Whitmire (2016) consider stand-alone data publication that follows citation 

conventions essential for incentivizing data preparation and ensuring wide accessibility.  

Commonly, researchers are unable or unwilling to invest the substantial effort needed to 

publish studies with negative or nonnovel (replicative) results. Yet such studies are critical to 

creating an unbiased foundation to evidence-based practice. To promote inclusion of negative 

and replication studies in the literature, Nosek and Lakens (2014) propose the use of 

“Registered Reports” in which peer-reviewed and accepted research proposals are registered 

prior to data collection, assuring authors that results will be published irrespective of 

outcome. Kupferschmidt (2018) highlights preregistration as critical to “a recipe for rigor.” 

Finally, resources should be invested to rescue valuable legacy datasets whose initiation 

predates the digital era and to capture information that cannot be captured by replication (e.g., 

older animal feed data compilations, genetic records, observations on environmental change 

and its impacts).  

Connecting Feedbacks to Ensure Data Are Useful and Usable 

For research data to achieve and maintain public value, they must inform end-user apps 

designed to enhance and secure our current food supply and address environmental and social 

challenges. For data, the Holdren (2013) memo specifically highlights the importance of 

coordination and collaboration across all relevant entities in public and private sectors. A 

highly diverse array of end-users—extension, nongovernment institutions, foundations, 

private entities—implement policies and strategies for achieving a range of outcomes from 

healthy diets (e.g., MyPlate [USDA n.d.]) to effective environmental markets and  
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sustainability branding (e.g., FieldprintR calculator [Field to Market n.d.]). Effective apps and 

tools depend on accurate information from both the demand and supply sides of the equation, 

and the data needs for end-user apps and tools may not be fully understood by researchers. 

Within research, disconnects between data needs for model development and data generated 

in empirical studies has been frequently acknowledged if largely unaddressed (Craufurd et al. 

2013). When such poorly calibrated models are converted to apps and deployed at scale, the 

error is propagated and related management decisions may have widespread and long-lasting 

negative consequences. Close coupling between researcher and end-user interests is essential 

to efficient use of resources in data collection, preservation, and curation.  

Partnerships for the Agricultural Data Value Chain 

An array of new or strengthened partnerships will be needed to underpin the strategies 

outlined earlier. Beyond engaging the data scientist, building infrastructure and human 

capacity within institutions require that agricultural scientists solicit the informatics expertise 

housed within libraries. In recent years, library scholarship has focused on digital assets and 

developed tools, workflows, and education materials that are readily adapted to any domain. 

For example, library sciences were instrumental in the development of the DMPTool 

(DMPTool 2010–2019) and the Data Curation Profiles Toolkit (Brandt and Kim 2014). The 

former is a funding agency-compliant, online resource for data management planning, and the 

latter is used to enhance digital products from any domain; both are examples of the practical 

solutions libraries can bring to agriculture, and library expertise can be harnessed for 

development of the architecture of data pipelines and related curricula.  

The articulation of needs and sponsorship of development and implementation of low-barrier 

solutions to infrastructure also necessitates partnering with science administrators, 

professional societies, and private publishing entities. In most academic institutions, faculty 

set the domain-relevant metrics to meet general policy and standards for promotion and 

tenure; thus, agricultural faculty must not only create new achievement metrics but also 

assume responsibility for communicating changes to their administrators. Likewise, where 

administrators have resourced initial development of infrastructure such as repositories to 

facilitate enhanced competitiveness via funding agency compliance (PURR n.d.), they need to 

remain engaged to understand ongoing resourcing needs. Sustainability requires supporting 

repository managers in providing high-level oversight for minimum data standards, including 

sufficiency of metadata and formats that are actionable (Van Tuyl and Whitmire 2016). As 

more scientists use repositories, support costs may escalate given current low levels of 

familiarity with data-sharing best practices. Van Tuyl and Whitmire (2016) also argue that 

funding agencies that have required data sharing but have thus far been relatively unengaged 

in the development of best practices have contributed to an “environment of confusion and 

low-quality shared data.”  

The Kriesberg and colleagues (2017) analysis of public access plans found the USDA to lag 

behind most federal agencies in presenting a thorough discussion on addressing all elements 

of the Holdren (2013) memo. When scientists perceive that a funding agency does not enforce 

their data-sharing policies, the stated policies have not changed data-sharing behaviors (Kim 

and Stanton 2016). In their capacity as a major funder of U.S. agricultural research, USDA 

National Institute of Food and Agriculture (NIFA) AFRI administrators should consider a 

more active role in incentivizing data sharing, including collaborating with researchers to 

rapidly pilot specific requirements rather than wait for grassroots emergence of metadata and 

data standards.  

Scientific societies have long served as key arbitrators of professional standards, including 

what constitutes a scholarly contribution and minimum publishable unit; policies and 

practices of affiliated journals are extremely influential in driving professional behavior. 

Supplying access to data via published papers appears to confer some citation advantage 

(Piwowar and Vision 2013), and journal policies requiring authors to share the raw data 

underpinning a publication have been identified as one of the main reasons why researchers 

share data (Mongeon et al. 2017).  
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In addition to encouraging and supporting systems-oriented research, McNamara, Hanigan, 

and White (2016) identified the updating of publication guidelines to encourage and support 

sharing of complete datasets as a key opportunity to advance knowledge. Van Tuyl and 

Whitmire (2016) recommend publishers not only assume responsibility for setting sharing 

policies, but also assume some responsibility for assuring the quality of data shared with their 

journals. In their A Data Citation Roadmap for Scientific Publishers, Cousijn and colleagues 

(2017) suggest publishers provide guidance to authors on suitable repositories. A team of 

major publishers, repositories, and researchers in the Enabling FAIR Data initiative are 

beginning to address these concerns for earth and space sciences (Stall et al. 2017). 

Ultimately, designing functional architecture for open data access in agriculture requires 

partners to commit to collaborative, iterative analysis of successes and failures in design, 

implementation, and utility.  

The Business Case and the Business Model for Data Sharing 

Physical and cyber infrastructure require a business case for making open access data and 

data tools viable to start and sustain over the long term. A major challenge that interoperable 

infrastructure would overcome is the financial inefficiency of multiple organizations 

implementing their own stop-gap solutions to similar data problems without seeking 

economies of scale (Sewadeh and Sisson 2018). For example, individual USDA agencies 

(e.g., Agricultural Research Service, Farm Service Agency, Forest Service, National 

Agricultural Statistics Service [NASS]) separately maintain and pay for their geospatial data 

platform. Pooling datasets and computational power and creating one-stop shopping would 

extend sparse data resources. Importantly, beyond a business case of efficiency is the case of 

facilitating new discovery and derivation of better answers. The NCBI (Textbox 3) is a 

tremendous example. By storing genetic sequence data from thousands of species in one data 

center and developing tools to search these data, researchers are rapidly identifying the 

functions of genes, causes of disease, and human evolutionary signatures. This simply could 

not be done if each data collection project resided on a single lab’s computer or in a domain- 

or species-specific database. The critical business case for data-sharing infrastructure in 

agriculture is that it will enable better understanding and decision making, with a low barrier 

of entry, so that U.S. production agriculture can compete sustainably.  

Toward this end, competitive grants programs (e.g., USDA–NIFA, National Science 

Foundation) could be extremely useful to build tools and apps but would not be efficient 

mechanisms for long-term data storage and curation, much as a library or the NCBI could not 

subsist on competitive grants. Short-term competitive funding cycles target innovation in 

research projects, not maintenance of supporting infrastructure or databases; other 

mechanisms are needed to support data infrastructure post innovation (Gabella, Durinx, and 

Appel 2017). In their analysis of biological database longevity, Attwood, Agit, and Ellis 

(2015) found that persistence of web-based data assets was relatively rare (23% of 326 

databases were still “alive” after 18 years); databases with longevity were almost always a 

function of core, institutional support. Recognizing the wasted investment such failures of 

persistence represent, these authors cautioned against creating more databases without 

developing long-term financial strategies inclusive of persistent, institutional leadership. The 

model of the USDA–NASS, which surveys and stores long-term agricultural production data, 

would be more relevant than traditional research grant programs as a path toward sustained 

financial support.  

As agriculture considers pathways forward for data, careful examination of the various 

financial models currently under active consideration by other domains should be undertaken. 

Infrastructure to support open data is, by definition, a public good and, as such, sustainability 

strategies must consider governance and community and not just cost (Neylon 2017). For 

domains in which data sharing is common, funding uncertainties have opened discussion on 

functional, hybrid business models that could supplement and stabilize prevailing models of 

public financing via short-duration research grants and/or strictly national funding (e.g., 

USDA–NASS).  
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Reiser and colleagues (2016) explore the question of who pays with a case study focused on 

The Arabidopsis Information Resource (TAIR n.d.) and suggest subscription fee-based 

models could be an option, but the challenge is balancing maximized access with incentives 

for subscriptions. The Arabidopsis Information Resource uses tiering based on usage to set 

fees in an approach analogous to the current business models used by private publishers of 

peer-review journals. Dryad (2018) offers both volume-based and usage-based submission fee 

payment plans for researchers, funders, universities, and publishers. Even as private 

publishers are moving into the data-sharing space via data publications (e.g., Elsevier 2019), 

however, their current business model (typically selling content to library subscribers) has 

been flagged as incompatible with open access (Björk 2017; Schimmer, Geschuhn, and 

Vogler 2015). Indeed, Allahar (2017) argues that it is only a matter of time before Internet 

technology and open-access philosophies combine to disrupt traditional private publisher-

subscription models.  

Other models that are fully compatible with open access include the institutional support and 

infrastructure models as well as an array of models considered less stable because they rely 

on commercial or other partnering and/or willingness to contribute. In a case study of the 

Universal Protein Resource (UniProt n.d.), Gabella, Durinx, and Appel (2017) review these 

models, as well as four other models not considered fully compliant with open access, and 

conclude that the infrastructure model is the most sustainable and equitable option for core 

life sciences data. In this yet untested model, public and private funding agencies pay directly 

for stewardship in contributions proportionate to grant volume. In contrast, PURR (n.d.) 

exemplifies an institutional support approach because Purdue administration not only funded 

the development of the repository, but currently subsidizes most of the recurring costs. The 

growth in costs associated with growth in use, however, are unclear as are any potential limits 

to internal funding for long-term curation of data as a public good versus as an asset primarily 

available to institutional employees. Ultimately, some combination of institutional support 

and infrastructure models may offer the most promise for public agricultural research data.  

The cost of the data infrastructure envisioned here is largely unknown but, without doubt, 

substantial investment will be needed. Cost concerns and uncertainties reflect the additional 

workflows and human resources needed for FAIR data stewardship as compared to simple 

storage (Bourne, Lorsch, and Green 2015). For journal articles, Karp (2016) estimated the 

additional costs of curation for open access articles to be minimal (an added $219 for five 

years), but the existing publication process is designed to produce curatable digital objects. In 

contrast, Gabella, Durinx, and Appel (2017) argue that data generated in a research project is 

not necessarily a finished product and will likely require additional, dedicated funding to 

convert data and databases to FAIR-compliant “knowledge bases.”  

Even with stronger requirements from funders for data preparation, some activities such as 

anonymization remain beyond the scope of the funded research. Service and technology 

investment required to deliver data online and without price or permission barriers—

subscriptions, pay-per-view fees, licensing restrictions, etc.—is far from cost free. Gabella, 

Durinx, and Appel (2017) estimate 1% of the entire life-science budget would be sufficient to 

support an infrastructure model, but it is unknown how costs would scale with the smaller 

overall budgets of agriculture. On the bright side, new return-on-investment studies in 

domains with large research data infrastructure are demonstrating substantial payoffs from 

data reuse (Beagrie and Houghton 2014; Sullivan, Brennan-Tonetta, and Marxen 2017). For 

example, the public life-science data managed by the European Bioinformatics Institute 

brings estimated research and development value of 6 to 7 times its annual operating expenses 

(Beagrie and Houghton 2016).  

In sum, it behooves the agricultural research community to not only invest in learning from 

the experiences of other scientific domains but also in piloting agricultural case studies to 

simultaneously strengthen the business case for sharing data and assess the value proposition 

of candidate business models. The most cost-effective and robust solutions for infrastructure 

may involve established tools and methods with the best service for the lowest cost coming 

from a mix of the innovative with the proven (Reiser et al. 2016). Leadership and oversight  
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by the USDA Research Education and Economics office, and specifically the Office of the 

Chief Scientist (OCS) in partnership with the Office of the Chief Information Officer (OCIO), 

would be logical. Stewardship of public research data is a natural extension of their historic 

role in support of the crop and animal research facilities that directly improved public well-

being and provided the foundation for additional innovation by the private sector. The 2018 

Farm Bill created the Agriculture Advanced Research and Development Authority 

(AgARDA) under the direction of the chief scientist that was envisioned to have the scope, 

authority, and investment needed to initiate improvement in integrating USDA’s data. Full 

appropriation of authorized funds for AgARDA would position a federal authority 

specifically to address the issues raised in this commentary; convening stakeholders in public 

listening sessions and USDA agency leadership in high-level meetings led by the OCS and 

OCIO are logical first steps for AgARDA in leading a partnership for developing and 

implementing infrastructure for open data that will deliver the necessary benefits to all 

stakeholders in the agricultural data value chain. 
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