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ABSTRACT
Crop and animal production tech-

niques have changed significantly over
the last century. In the early 1900s,
animal power was replaced by trac-
tor power that resulted in tremendous
improvements in field productivity,
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which subsequently laid foundation for
mechanized agriculture. While preci-
sion agriculture has enabled site-specific
management of crop inputs for improved
yields and quality, precision livestock
farming has boosted efficiencies in
animal and dairy industries. By 2020,
highly automated systems are employed

in crop and animal agriculture to in-
crease input efficiency and agricultural
output with reduced adverse impact on
the environment. Ground and aerial ro-
bots combined with artificial intelligence
(AI) techniques have potential to tackle
the rising food, fiber, and fuel demands
of the rapidly growing population that is
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slated to be around 10 billion by the year
2050. This Issue Paper presents oppor-
tunities provided by ground and aerial
robots for improved crop and animal
production, and the challenges that could
potentially limit their progress and adop-
tion. A summary of enabling factors that
could drive the deployment and adoption
of robots in agriculture is also presented
along with some insights into the training
needs of the workforce who will be in-
volved in the next-generation agriculture.

INTRODUCTION
AND BACKGROUND

The increase in demand for food, feed,
fiber, and energy is inevitable, given
the projected population increase in the
coming decades as well as increasing
affluence in developing economies of the
world. Food production has to increase
by approximately 70% to feed 9.7 bil-
lion people by the year 2050 (Bruinsma
2009). Advancements in biotechnology
are seen as one of the potential solu-
tions for increasing food production to

address these impending local and global
demands (Tilman et al. 2001). Efficiently
managing crop inputs such as seeds,
chemicals, fertilizers, and labor to boost
yields and quality while minimizing
environmental impacts is important to
support the on-going biotechnology ef-
forts. Agricultural robots combined with
digital agriculture techniques are seen
as an effective method for monitoring
large acreages to assess crop conditions,
increase precise management of crop
inputs in row and specialty crops, allow
efficient harvesting in specialty crops,
evaluate high yielding and resource effi-

cient crop varieties in research plots, and
be more efficient in managing livestock
(Chen 2018). Motivated by these op-
portunities, numerous teams around the
world have been working on research and
development of various types of robotic
solutions for crop and animal farming.
Figure 1 provides a broad classifica-
tion of such agricultural robots. Ground
robots or unmanned ground vehicles
(UGVs) and aerial robots or Unmanned
Aerial Systems (UASs) are used in both
row-crops and specialty crops. Robotic
manipulators (robotic arms) on the other
hand are primarily used in dairy, specialty
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crop, and greenhouse applications. Each
of these robot categories along with some
examples are discussed in detail in the
next section.

Ground Robots
Changing weather patterns and the

need to boost agricultural productiv-
ity require a paradigm shift in how
field operations are accomplished. For
example, UGVs could perform repetitive
operations with great precision for up to
22 hours per day (with a small portion of
that time for service and maintenance)
which could substantially increase the
daily work output compared to human-
operated machinery. Deploying UGVs
for crop and livestock production is a
tremendous opportunity to boost pro-
ductivity. However, deploying UGVs
that are capable of decision making and
working in remote harsh field conditions
intelligently and safely comes with both
complex engineering and socio-economic
issues. Some important engineering
challenges include: (1) designing effec-
tive control architectures and artificial
intelligence (AI) algorithms for operat-
ing individual and a fleet of UGVs with
and without humans in the loop and (2)
designing and deploying robots to work
faster and more gently than human labor
when interacting with plants and ani-
mals. Some important socio-economic
challenges include: (1) Fear associated
with robots in terms of replacing human
labor (2) Economic feasibility of robots
for both large and small acreage farms
(3) Liability, security, and data privacy
concerns associated with UGVs.

Aerial Robots
UASs have been explored as technol-

ogy tools of great value for agricultural
production. One of the challenges to the
greater exploitation of UAS in agricul-
tural production is the computational
resources required to exploit all the data
and information they can obtain. The
ability to simply rise above the crop or
livestock and see what cannot be seen
from the ground provides opportunity to
determine crop and animal health more
easily. For example, the ability to exam-
ine the ground from the air above enables
detection of plant emergence without

physically entering the field, or provides
a more efficient way to count or analyze
livestock. UASs can quickly determine
soil moisture and crop health over the
entirety of the field with great preci-
sion. Similarly, UAS-based systems can
be used to measure animal temperature
quickly and non-invasively, and thereby
identify which animal might be in heat or
have an illness. As miniaturized sensors,
such as microwave radiometers, short-
wave infrared sensors, and LiDARs (light
detection and ranging), are integrated
with UASs, opportunities to measure soil
moisture and crop health precisely, map
field topography, and locate irrigation
system leaks on a field-by-field scale,
will become affordable to the producer.
LiDARs can measure plant height, often
an indicator of crop health. LiDAR data
can also be used to measure livestock
growth and health. As researchers de-
velop algorithms to exploit the increased
spatial resolution of low-flying UAS,
increased opportunities will occur to
reduce inputs to crops by applying inputs
to only areas where and when the input is
needed. Crop problems such as diseases
could also be detected earlier before
they become widespread. Better spatial
resolution of livestock images leads to
enhanced ability to detect needs of each
animal individually.

UASs, however, also suffer from some
important limitations. One of the chal-
lenges to exploiting UASs in agriculture
production will be weather related—most
small UASs cannot operate in high
winds or medium precipitation. Another
challenge will be the acquisition and
maintenance of computing resources to
rapidly process images into information.
Determining the optimal suite of UASs
and payloads is a challenge. Calibration
of sensors and data to ensure the quality
of the data collected, and useful metadata
generation are some of the other chal-
lenges. The opportunity to add another
data collection system—an UAS—to an
existing suite of data collection systems
(e.g., yield monitors and spray control-
lers) creates a challenge in data inte-
gration. UAS allows collection of data
over the entirety of a field, as opposed
to a point sample collection with a soil
moisture probe or a monitor on a feed or
water trough.

Producers interested in using aerial
robots on their farms will need to decide
whether to operate their own UAS or hire
a UAS service provider. Service provid-
ers can standardize operational variables
to meet data quality and application needs
and amortize the cost of the technology
over more users per unit time, whereas
self-operation provides greater flexibility
in use and access. Similarly, there are
trade-offs in running analyses locally or
using cloud computing.

Robotic Manipulators
Robotic manipulators are mechanisms

that manipulate objects in a given work-
space and are typically found in industrial
automation applications for performing
automated movements Robotic manipula-
tors are now becoming indispensable for
automating precise repetitive motions in
both animal and crop production. Robotic
milking stations used in dairy production
are good examples of manipulator type
robotics that are commercially avail-
able. These automatic milking stations
use proximity sensors, robotic arms and
suction cups for automating the milking
process (Broucek and Tongel 2015). Ro-
botic arms are a type of manipulators that
mimic hand movements of a human for
picking and placing of objects. In crop
production, robotic arms are predomi-
nantly deployed in orchard and green-
house applications. In orchards, picking
of fruit is accomplished by mounting
robotic arms on either a ground robot or
other farm vehicles. The ground robot
navigates to the fruit tree and the robotic
arm performs the operation of picking the
fruit. Robotic arms have been developed
for picking vegetables such as toma-
toes, mushrooms, and cucumbers (Van
Henten et al. 2002; Reed et al. 2001).
Apple and cherry harvesting robot arms
can be found in the literature (Davidson
et al. 2015; Burks et al. 2005; Silwal et
al. 2014). Very recently, Atefi and col-
leagues (2019) have shown robotic arms
have also been used for leaf grasping of
corn and sorghum plants for phenotyp-
ing applications. While robotic milking
stations are commercially available,
robotic manipulators for specialty crop
and greenhouse applications are still in
research and development phase. Robotic
arms used in orchards are challenged by
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occlusion of fruit (one fruit in front of
another) and varying lighting conditions
which adversely effects the time required
for picking the fruit (Davidson et al.
2015). The speed of picking a fruit from
a tree is still relatively slow compared to
manual picking. Improved motion plan-
ning and machine vision algorithms, and
AI techniques are needed to improve the
fruit picking efficiency of robotic arms.
In crop production (both row-crop and
specialty), robotic manipulators are typi-
cally mounted on ground robots, hence
further discussion on the opportunities
and challenges of this category of robots
for specific applications is presented in
the section on crop producton. Opportu-
nities and challenges of robotic manipula-
tors in animal agriculture is presented in
the section on animal agriculture..

Ground and aerial robots could be
working as a team to identify and solve
problems in the field, whereas robotic
manipulators could be milking the cows
in the barn in a connected farm setting
(see Figure 2). UASs could identify larg-
er issues at field scale, whereas, UGVs
could be navigating autonomously to
specific locations in the field for high-res-
olution fertilizer or pesticide application

to solve the issue. Seamless information
exchange happens among ground and
aerial robots with a cloud-based brain
or decision support. Computationally
intensive operations could be done on
the cloud for minimizing computational
loads on the robotic vehicles. In an inte-
grated animal and crop production con-
nected farming system such as the one
shown in Figure 2, sensor and process
data from both the field and animal barn
is sent to the cloud for further analytics
and improved decision-making, and these
decisions are sent back to the robotic
applicators for implementation in the
field. Robotic manipulators housed in the
barn could be milking the cows, provid-
ing right amount of feed, monitoring the
environmental conditions, and measuring
physical attributes of the livestock.

GROUND AND AERIAL
AGRICULTURAL ROBOTS
Crop Production
Row crops

Row crop production practices aim to
optimize productivity through maximiz-
ing yields and minimizing cost. Gains

in yield are commonly achieved through
advances in genetics, improvement of
soil health, and optimal management of
inputs (i.e., timing, rate and placement
of nutrients, crop protectants and wa-
ter). Mechanization, the historical trend
towards larger and more advanced equip-
ment and consolidation of smaller farms,
reduces labor costs through economies of
scale. Automation has the potential to not
only augment current production prac-
tices through optimization of crop inputs,
but also serves as a disruptive technol-
ogy that has the potential to change the
farming paradigm by reverting to more
scale neutral technologies and perhaps
Farming-as-a-Service (FaaS).

The demand for automation in the
rapidly evolving agriculture equipment
industry is moving towards the deploy-
ment of large autonomous vehicles. With
the continual increase in engine power
and the size of manned equipment, there
is concern associated with removing the
human operator from the field environ-
ment—safety and liability. Liability of
large autonomous machinery is a driving
factor for thinking small. In the event of
a malfunction or collision, small UGVs
could cause less damage compared to
an UGV with high gross vehicle weight.
The concept of replacing conventional
large agricultural machines with multiple
small-to-medium-sized UGVs is fea-
sible given the advances in autonomous
technologies (Blackmore et al. 2004;
Higuti et al. 2019; Troyer, Pitla, and Nut-
ter 2016). UGVs will operate 22 hours
per day to compensate for the reduced
work rate of smaller equipment, and to
minimize environmental impact through
precise management of crop inputs. Soil
compaction that is associated with the use
of larger manned machinery, will be po-
tentially alleviated with the use of small
autonomous equipment (Shearer and
Pitla 2013). Low gross vehicle weights
and optimized field travel paths of UGVs
will contribute to reduced soil compac-
tion. Additionally, in a system where one
large piece of equipment is used for field
operations and if that equipment is down
for repair and maintenance, the complete
operation is stopped. However, in the
case where multiple UGVs are used,
even if one or two UGVs are down for
repair and maintenance, other UGVs canFigure 2. UGVs, UASs, and Robotic Manipulators in a Connected Farm.
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still continue to work without halting the
entire operation and minimize risk (Anil
et al. 2015). UGVs could be operating
in large numbers in a swarm configura-
tion in the future (Project Xaver: https://
www.fendt.com/int/xaver; Swarm Farm:
https://www.swarmfarm.com). In addi-
tion to minimizing the risk, one of the
other major goals of using these UGVs
is to reduce the scale of management
to a small land unit or potentially to an
individual plant.

Concept driverless tractors have been
showcased by both established equipment
manufacturers (CNH Industrial 2017;
Farm Equipment 2019, 2020; Raven Au-
tonomy 2020) and start-up companies in
last few years. A list of commercial robot
prototypes offered by start-up companies
can be found here: https://builtin.com/
robotics/farming-agricultural-robots.
Some companies are offering advanced
row-crop robotic solutions in the form of
Farming-as-a-Service (FaaS: Sabantaoag.
com). Researchers are developing robotic
prototypes for row crop field applica-
tions such as autonomous weed manage-
ment, seeding, and plant phenotyping
(Murman 2019; Young, Kayacan, and
Peschel 2019; Yuan et al. 2019; Zhang et
al. 2016). Multi-purpose robotic plat-
forms that could be used throughout the
growing season are being explored. This
is analogous to a tractor being used for
multiple field operations such planting,
tillage, and grain haulage. A UGV that
could be utilized throughout the growing
season for multiple operations could be
cost effective, however, there are com-
plexities in terms of hardware and soft-
ware modularity and system performance
that need to be resolved (Fountas et al.
2020). Figure 3 shows a 60 horsepower
multi-purpose UGV called “Flex-Ro”
3 phenotyping a soybean field. For this
application, Flex-Ro was equipped with
cameras, portable spectrometers, and
ultrasonic height sensors to characterize
physical traits of different soybean variet-
ies (Murman 2019).

Robotic manipulators for corn and sor-
ghum plant phenotyping are also under
development (Atefi et al. 2019; Bawden
et al. 2016). Figure 4 shows a phenotyp-
ing robotic arm that is capable of grasp-
ing an individual leaf to measure leaf
chlorophyll, leaf temperature, and mois-

ture. In the future, this type of robotic
arms could be mounted on UGVs to im-
prove the overall capabilities of the robot-
ic platforms. For example, a robotic arm
mounted on an UGV could be collecting

leaf and soil samples for both in-field
and laboratory analysis. However, chal-
lenges exist for the deployment of UGVs
in current row-crop production settings.
The economics of autonomous operation

Figure 3. Flex-Ro, a 60 HP UGV, collecting soybean plot information. (Photo credit:
Santosh Pitla, University of Nebraska-Lincoln.)

Figure 4. Robotic Arm phenotyping a corn plant in a green house. (Photo credit:
Abbas Atefi, University of Nebraska-Lincoln.)
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play a big role in the adoption of UGVs.
Cost comparisons between conventional
agricultural equipment and UGVs are
beginning to emerge in literature (Shock-
ley, Dillion, and Shearer 2019), however
detailed economic and life cycle analyses
of UGV systems or swarms are required.
Control architectures for stand-alone and
fleet level operation of UGVs are still
evolving (Posselius et al. 2016). These
control architectures are important for in-
telligent operation of machinery in a field
environment whether they are working by
themselves or working in a fleet configu-
ration. Effective control architectures and
AI algorithms will provide the ability
for the UGVs to differentiate between
obstacles, crop, and collaborative entities
(e.g., humans or other robots) to accom-
plish field tasks (Jasiński et al. 2016). AI
enabled UGVs will allow the machine to
diagnose itself when the operator is not in
the loop. For example, when crop residue
plugs a tillage tool and when a nozzle
plugs on a spray boom, or if a bearing
goes out on a planter row unit, the UGV
has to diagnose and resolve the problem
on its own (Shearer and Pitla 2013). Key
sensing components of these control
architectures are sensors such as LiDARs
and multi-spectral cameras were histori-
cally expensive and required significant
computing resources. However, with the
proliferation of sensors in the driverless
on-road vehicle sector, the cost of sens-
ing and computing devices (e.g., GPUs)
is projected to decrease in the coming
years. AI technologies are advancing at a
faster pace; however, the availability of
agricultural training datasets is limited.
More publicly available training datasets
of agricultural environments and open
source tools are needed. Internet connec-
tivity will become increasingly important
to the logistics of servicing this equip-
ment in the field (e.g., refilling with seed,
nutrients, crop protectants and fuel) as
well as coordinating the activity of fleets
or swarms of UGVs. Safety standards
for the operation of autonomous agricul-
tural field machinery are still in nascent
stages and require effective public-private
partnerships to develop benchmarks and
regulations to complement the advance-
ments in UGV systems. The standardiza-
tion process will likely be informed and
influenced by the on-road transportation

standards, particularly for larger equip-
ment that may need to be transported on
public roads (ANSI 2020).

While UGVs are aimed at automating
both production activities and sensing
processes, UASs are so far used primarily
for sensing applications. The predomi-
nant use of UASs in row crop produc-
tion has been for general scouting (Stehr
2015). Weed, pest, and disease infesta-
tion resulting in observable changes in
row crop color or physical structure can
readily be observed with consumer-grade
UASs equipped with standard cameras
(Peña et al. 2015; Vanegas et al. 2018;
Wang et al. 2020). UASs are frequently
used to quantify and document crop dam-
age for making insurance claims (Luciani
et al. 2020).

Amore advanced, but less common,
use for UASs is to estimate production
parameters using image-based remote
sensing. Visible, multispectral, or thermal
cameras deployed on multi-rotor or fixed-
wing UASs are used to collect a series of
images along prescribed flight paths at
high spatial resolutions (1–10 cm per pix-
el). Figure 5 shows an example of a UAS
system collecting multispectral images
of soybean plots. Images are generally
stitched into orthomosaic maps cover-
ing entire fields that can be overlaid with

other data layers in geographical informa-
tion systems (GIS) or farm management
software (FMS). Data are interpreted and
used to prescribe management operations
and/or predict/explain observed spatial
variability in productivity.

Research applications expand upon
image-based remote sensing by incor-
porating more expensive sensing and
data analysis methods, including spectral
sensing (Hamidisepehr and Sama 2019;
Varela et al. 2018) and three-dimensional
modeling (Dvorak et al. 2020). However,
UASs equipped with research-grade
sensors can frequently cost more than
a well-equipped 100 HP tractor, which
has limited use in production agriculture
given the financial risk associated with
deployment. UAS technology is advanc-
ing at fast pace and companies are just
beginning to offer UAS that can perform
material application (e.g., spot spraying
of chemicals: https://www.dji.com/t16).

Numerous challenges prevent wide-
spread adoption of UASs in row crop
production. Prior to early 2010s, platform
technology was the critical barrier that
limited the use of UASs to research appli-
cations. Significant advances in battery
technology and autopilot control have
since made consumer UAS technology
feasible, although cost still presents an is-

Figure 5. AMultirotor UAS collecting multispectral images of soybean plots.
(Photo Credit: Michael Sama, University of Kentucky.)



7COUNCIL FOR AGRICULTURAL SCIENCE AND TECHNOLOGY

sue. Between 2012 and 2016, researchers
and producers commonly referenced con-
straints posed by Federal regulations on
UASs operating in the National Airspace
System were commonly referenced by
researchers and producers as a bottleneck
for integration into standard production
practices. Regulations have since evolved
but are still in their infancy and continue
to restrict usefulness in large-scale row
crop production. For example, deploy-
ment of fully autonomous UASs remains
prohibited, and operating beyond line of
site, above the stipulated altitude, or at
night requires waivers that producers or
crop consultants with limited experience
may not be able to readily obtain.

Logistical challenges include a
wide range of aspects such as platform
endurance and durability, availability of
ground reference data, and data through-
put. Multi-rotor UASs tend to be easier
to operate and deploy sensor payloads
than fixed-wing UASs but cannot cover
areas as large or as quickly as fixed-wing
UASs. Both types of platforms cannot
typically be used when precipitation or
high winds are present. When used to
collect remotely sensed data, calibrating
sensors to parameters of interest remains
a challenge to turn-key implementation—
partly attributed to varying environmental
conditions and the need for adequate
ground reference data at field scale.
While the recent trend towards cloud-
based data aggregation and processing
has improved data throughput, remote
sensing data collected with UASs tends
to produce large data files that can be dif-
ficult to process and manage.

The limited number of UAS manufac-
turers may also present future challenges
to increased adoption of UASs. Nearly
three-quarters of consumer UASs are
supplied by a single rotor-craft manufac-
turer and no major consumer UAS manu-
facturer exists within the United States,
which interestingly is in sharp contrast to
military UASs. Agricultural equipment
manufacturers have been predictably (and
justifiably) slow in incorporating UAS-
based products into their offerings as they
transition from selling only conventional
equipment to also providing technology
and data solutions.

Economics are the ultimate challenge
of incorporating UASs into standard pro-

duction practices. Regional and national
scale research is needed to demonstrate
the applicability of a given UAS-
deployed technology towards current
production practices. Very little data are
available showing the economic benefit
that UASs provide to row crop producers.
Coordination between UAS and sensor
manufacturers and independent research-
ers will be critical for gaining public’s
confidence in the economics and practi-
cality of this emerging technology.

Orchard and Specialty crops
Agricultural mechanization and auto-

mation have made a tremendous positive
impact around the world in reducing farm
labor requirements, optimizing input
utilization, and increasing crop yield
and quality. However, the adoption of
advanced technologies and machines in
farming specialty crops including tree
fruit orchards have been minimal. Many
field operations such as weeding, tree
training, pruning, flower and fruit thin-
ning, and fruit and vegetable harvesting
are still entirely done manually. As the
farming industry faces continually de-
creasing availability and increasing cost
of farm labor around the world (Gallardo
and Brady 2015), specialty crop farming
may not be sustainable if labor saving
technologies are not adopted in the near
future.

Research and development efforts for
addressing the above challenges have
been in place for several decades (e.g.,
weeding [Slaughter, Giles, and Downey
2008], harvesting [Silwal et al. 2017],
and pruning work [He and Schupp
2018]) with only marginal success for
commercial adoption to date. Some of
the challenges to successful adoption
include lack of desired speed, accuracy,
and robustness as well as high cost of
the technology. Recent innovations and
advancement in robotic systems and
technologies such as soft robotic hands,
AI tools such as deep learning, and in-
creasingly affordable parallel computing
systems such as graphic processing unit
(GPU) have provided new opportunities
to overcome some of these challenges
and develop practical automation and ro-
botic solutions for specialty crop farming.
In recent years, utilizing these advance-
ments, various research institutions and

private companies/startups around the
world have been aggressively pursuing
development of robotic systems for field
operations in specialty crops including
fruit orchards.

In tree fruit crops and many vegetable
crops, harvesting is the most critical
hurdle as it requires the largest seasonal
labor and highest cost among all field op-
erations (Silwal et al. 2017; Washington
State Employment Security Department
2016). Because of the criticality of this
field operation, there have been focused
efforts around the world to improve
harvesting of various fruit and vegetable
crops including apples (Hohimer et al.
2019; Silwal et al. 2017), kiwifruit (Wil-
liams et al. 2019), strawberries (Xiong et
al. 2019), and asparagus (Leu et a. 2017).
Other efforts in developing robotic solu-
tions for specialty crops include weeding
and thinning in vegetable crops, field
logistics (e.g., strawberry tray moving
robots [Hayashi et al. 2010], bin dog [Ye
et al. 2017]), precision chemical applica-
tion based on the canopy needs (Oberti et
al. 2016), crop canopy management and
crop load management including pollina-
tion, training, thinning, and pruning. To
take the full benefit of automation and
robotic technologies in specialty crop
farming, all labor-intensive operations
need to be automated so that there is a
uniform, long-term employment in farm-
ing rather than seasonal peaks of hard-
working laborers.

A large amount of federal, state, com-
modity group, and venture capital fund-
ing has been invested in recent years for
advancing automation and robotic solu-
tions for specialty crops, creating a highly
conducive environment for research and
development. With these resources and
efforts, we are closer than ever in making
robotic systems a reality for these crops
as evident by the commercial vegetable
thinning efforts by Blueriver Technolo-
gies (acquired by John Deere in 2017,
[John Deere 2017]), the first commercial
harvest of apples by Abundant Robotics
in New Zealand in March 2019 (Benson
2019), and a full-scale robotic apple
harvester is being evaluated by Fresh
Fruit Robotics (FFRobotics 2016). All of
these examples illustrate that automated
systems are beginning to be used on com-
mercial farms. Figure 6 shows a robotic
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arm equipped with machine vision and AI
algorithms picking apples.

UASs use in specialty crops such as
orchards and vineyards has been in-
vestigated broadly. Some of the recent
research and development efforts in this

area include monitoring and assessment
of crop status (Baluja et al. 2012; Poblete
et al. 2017), identifying/detecting various
issues in the field including new pest
infestation (Albetis et al. 2017), opera-
tion of irrigation system (Chakraborty et

al. in press), and monitoring the progress
of various field management practices.
Use of UASs in these activities can be
referred to as a passive application as the
platform is used just to collect data from
the fields but not interact directly with
the crop. Alternatively, active application
is where tasks are performed in the field
including precision spraying of chemi-
cals (Faiçal et al. 2014), deterring birds
from fruit crops such as wine grapes and
blueberries (Bhusal et al. 2019), and crop
pollination (Chechetka et al. 2017; Wood
et al. 2013). Figure 7 presents an example
of active application with UASs for
deterring bird pests. These UAS-based
techniques show good promise for spe-
cialty crop production as the industry is
generally output-driven (meaning higher
output with higher inputs, if needed),
rather than input driven. Minimization
approaches are generally employed in
some other crops such as corn and wheat.

Some major challenges exist in using
ground and aerial robots in orchard envi-
ronments including lack of desired speed,
accuracy, and robustness in outdoor
environment. Variability and complexity
of crop canopies, variable and uncertain
weather, and variability (in shape, size,
color, and so on) and delicacy of produce
are some of the major challenges impact-
ing the performance of robotic machines.
One specific case related to complexity of
crop canopies would be the occlusion of
objects that are meant to be manipulated
(e.g., harvested, pruned, or sprayed).
For example, a harvesting robot faces
the challenges of harvesting a fruit (e.g.,
apples, strawberries) being occluded and/
or obstructed by leaves, branches, trellis
wires, and trunks. Similarly, pruning in
tree fruit crops is challenged by the com-
plex orientation and position of branches
needing to be removed in a tree canopy,
whereas weeding in vegetable crops is
challenged by the similarities between
crop plants and the weed to be removed.

In recent years, there has been con-
tinuous improvement and adoption of tree
fruit canopies to create structured, narrow
crop canopies where all or most of the
canopy parts (e.g., fruit and branches)
are visible and accessible for robotic
operation. However, even with the best
possible architecture of apple trees avail-
able in the industry around the world, it

Figure 6. Apple Harvesting Robot. (Photo Credit: Manoj Karkee, Washington State
University.)

Figure 7. UAS used for automated bird pest deterrence in vineyard. (Photo credit:
Manoj Karkee, Washington State University.)
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has been difficult for the latest prototype
robots to access and pick more than 80%
of the fruits. Robots could be designed
to be more dexterous to access and pick
a larger percentage of fruits. However,
farming requires simpler, but effective
machines compared to other industries to
keep the cost at affordable level and to
be able to operate and supervise them in
farms by workers with limited technical
skills. Additionally, farmers should be
able to fix the machines/robots quickly
in remote field locations as they will be
dealing with highly time sensitive opera-
tions like harvesting asparagus where a
delay of a day might mean a huge loss
in yield and/or quality of the produce.
Further advancement and adoption of
fruit cultivars and canopy architectures
friendlier for robotic operation will play a
key role for the wider success of robotic
farming in these crops. Genetics, breed-
ing, and crop physiological studies, in
close collaboration with engineering
studies, are crucial to make this happen.

Multi-purpose robotic machines could
be an important opportunity for future
research and development. Modular
end-effectors could be designed such that
different end-effectors could be installed
in and taken out of a robotic machine to
perform multiple field operations over the
entire farming season using the same ma-
chine. For example, a robot for tree fruit
orchards could be designed so the same
machine could be used year-round for
training trees, pruning branches, thinning
flowers, pollinating flowers, thinning
fruitlets, applying chemicals precisely,
and harvesting fruit. Other crops such as
vegetables (particularly organic) need
efforts in developing robust solutions
for weeding, thinning, and harvesting. In
case of UASs, it is important that active
operations like deterring birds or surgical
application of chemicals be combined
with regular crop monitoring operations.

In both row-crop and specialty crop
production, system modularity is another
big benefit that can be introduced into
farming with automated/robotic systems.
Farming with small robots that can work
together in close collaboration (as a
swarm) has been a new direction (Anil et
al. 2015). With this model, all sizes and
types of farms would be able to adopt
the technology as smaller farmers could

acquire just a few machines while larger
farmers can acquire dozens of them or
even hundreds of them as desired to fit
the needs of their operations. For the suc-
cessful implementation of swarm robot-
ics, faster broadband connectivity in the
fields would be important. These fields
are generally located in the areas that are
currently less connected and where mo-
bile service providers have less incentive
to expand because of the remoteness of
the location and lack of consumer vol-
ume. Efforts like Farmbeats (Microsoft
2019) provide a potential opportunity for
improving connectivity on farms. Federal
initiatives such as the Rural Broadband
Connectivity Act of 2018 (USDA 2018)
and a sizable growth in connectivity con-
sumption by farming industry to support
the future of farming may considerably
expand future broadband connectivity in
farming areas. A detailed discussion on
farm connectivity is presented in the sec-
tion on farm connectivity.

The socio-economic implications of
adopting new technologies are another
crucial aspect to consider in develop-
ing and adopting robotic technologies in
farming. In the public, and primarily in
the communities dependent on the farm-
ing jobs being automated, there can be a
fear of losing jobs when automation/ro-
botics is introduced to specific industries/
operations. These concerns exist in row
and specialty crop production, and other
non-farming activities as well. There is
a huge shortage of labor in agriculture
and it is expected to continue to worsen
in the years to come (Gallardo and Brady
2015). If/when we are able to move to a
completely automated or robotic farming
in specialty crops, some people would
obviously lose their jobs. At the same
time, new jobs will be created in manu-
facturing, sales, supervising, servicing,
and maintenance of these machines,
which will require different set of skills
than seasonal labor in farming, but will
provide year-around quality jobs with
better pay.

Many farm labor tasks are difficult,
requiring heavy repetitive motions that
pose substantial risks to the wellbeing
of farm laborers. The advancements we
have witnessed over the last decade in
AI, robotics, and other relevant disci-
plines suggest the these technologies will

reduce the physically demanding, risky,
and hazardous tasks and create a better
working environment for people involved
in farming (e.g., remote operation and
supervision using augmented reality).

As we move into smart farming of
future, where farming decisions are
made increasingly with the AI-powered
systems and implemented in the field by
robotic systems, integration of ground
and aerial robots for decision support and
collaborative field operations would be an
important direction. For example, there
have been new research efforts for inte-
grating sensing and field operations using
UASs and ground robots in understand-
ing disease pressure and nutrient needs
and applying certain chemicals to achieve
desired outcomes. Similar technolo-
gies could be used to improve irrigation
management in various specialty crops
including nuts, grapes, and tree fruits.

Animal Agriculture
Dairy

Robots or automated systems cur-
rently used in the dairy industry include
automatic milking systems (AMS), feed-
ing systems, teat sprayers, calf feeders,
hoofbaths, and manure handling among
others. Clearly, the offerings and mar-
ket competition of several commercial
manufacturers driving these technologies
have only helped to improve the technol-
ogy and offerings to the market. The first
commercially available milking robots
were available in the early 1990s. Early
adopters of AMS technology initially
carried the burden of the steep learn-
ing curve associated with the automated
process of milking a cow. Presently,
advances in milking systems place the
milking machine at the center of data
capture related to milk production, nutri-
tion, reproduction, and animal health. Ex-
pected performance of these AMS aims
to resolve current demands (and possible
future ones) that dairy producers and
markets impose on the industry. Although
AMS made milking cows faster and more
efficient while maintaining optimal milk
quality and minimizing disease, there are
several well-known challenges in dairy
production such as increased demands on
traceability and transparency throughout
the food chain (Lopez Benavides and
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Paulrud 2018). Despite these challenges,
there are an estimated 35,000 robotics
milking systems currently in use globally
(Salfer et al. 2019).

Initial attraction to AMS resulted
from the lifestyle associated with it (i.e.,
milkers not bound to strict milking times)
and giving producers the opportunity
to focus attention on other farm-related
processes or other income opportunities.
The mindset of relegating all milking
routine steps to the machine has in some
cases also translated into neglect of some
basic management practices associated
with the hygiene of the barn environment
and maintenance of the milking machine,
which generally result in substandard
milk quality parameters. Nevertheless,
the majority of dairy producers using
AMS manage these systems effectively,
maximizing cow productivity without
affecting animal welfare or milk quality.
Small and large dairy herds have now the
capacity to use AMS and manage them
quite proficiently, as the knowledge and
field technical support has grown consid-
erably over the last few decades.

The obvious trend in interconnected-
ness of cow information and devices in
the farm environment (known as preci-
sion dairy farming) will help drive the
dairies of the future. Research is ongoing
on devices that monitor gait and locomo-
tion, rumination, and breathing, among
others, which will overall help dairy
farmers understand the complex dynam-
ics of the milking environment and how it
can be improved. As AMS use continues
to rise and will likely become the norm in
many parts of the world, some challenges
still need to be overcome. Because of
the need for cows to be milked volun-
tarily, there will be more attention paid
to managing lameness (King et al. 2017),
the physical conformation and placement
of the udder and teats, and cow behavior
(Hallen-Sandgren and Emanuelsen 2017).
Initial concerns about cow behavior when
switching from group to individual milk-
ing—such as decreased milk yield, urina-
tion, defecation, increased vocalization
(Rushen, de Passillé, and Munksgaard
1999)—have most likely been resolved,
as demonstrated by Jacobs and Siegford
(2012), but other societal concerns and
perceptions will still need to be clarified
(Beaver et al. 2019). People in the dairy

industry usually define animal welfare
by good health, hence installations have
been designed to maximize animal health
and productivity. Monitoring of behavior
and productivity has proven to be useful
for the early detection of health problems,
which helps to improve milk production
and minimize animal welfare concerns
(King et al. 2018).

The concept of animal welfare of cows
housed indoors (e.g., free stall systems)
will continue to be debated, mainly
because of the divergence in understand-
ing of what natural behavior and animal
welfare means for a domesticated animal.
For this reason, newer developments in
AMS-type environments and housing
must account for societal concerns and
animal motivations, among others, to
ensure they become common practice and
accepted by consumers (Beaver, Ritter,
and von Keyserlingk 2019).

Precision Livestock Farming (PLF)
Robotics in poultry and swine produc-

tion is currently under development, and
there is currently a fair amount of poten-
tial for automation within these animal
systems, which is mainly focused on the
feeding of animals, and the processing of
products (meat and eggs). However, this
section focuses on the automation and
robotics that interact with the animals.

In the swine industry, automation and
robotics the focus has been on animal
breeding and gestation areas. A group
in Germany has successfully tested an
autonomous robot for dairy manure
scraping in a loose housing gestating sow
system (Ebertz, Krommweh, and Büscher
2019). While the researchers suggest
some modifications, the robot cleaned
the area and was able to successfully
interact with the animals within the pen.
Other robotic applications are either not
autonomous or operate in the absence of
animals. A “boar bot” is a widely used
robotic application in swine industry.
This is either a cart or a small vehicle that
can hold a boar or its leash. The boar bot
drives around animals for nose-to-nose
contact during heat checking and breed-
ing of sows. While this is not an autono-
mous vehicle, it shows the need for robot-
ics within the swine production systems.
Another type of robot that is commercial-
ly available includes a robot that runs on

rails that distribute straw across the pens.
This type of robotic automation is needed
mainly in Europe, where providing mate-
rial for enrichment is obligatory by the
animal well-being legislation since 2003
(Bracke et al. 2006). While not interact-
ing with the animals directly, autonomous
robots for cleaning stalls prior to animals
entering the building to ensure biosecu-
rity between groups of animals are under
development.

In poultry systems, robots are being
investigated in the broiler industry and
the buildings for layer hens housed on
bedded floor. Robots are designed to pick
up any eggs laid on the floor, monitor
environmental conditions at the bird
level, turn over the litter, and spray dis-
infectants. TIBOT Technologies suggests
that robots placed on the floor encour-
ages hens to use nesting boxes, therefore
decreasing the number of eggs laid on
the floor (TIBOT 2019). Octopus Poultry
Safe is a larger robot that is designed
to turn the litter, sanitize the environ-
ment, disinfect the building, and collect
data on temperature, humidity, carbon
dioxide, sound, and light (Poultry World
2019; Octopus Robotics 2019). Besides
commercially available robots, there is
research documenting the development
of these types of robots. For example,
Georgia Tech University has designed
a robot that can autonomously pick-up
eggs (Usher et al. 2017). Feed delivery
systems are a commonplace in both poul-
try and swine facilities. There are new au-
tomations that allow for new production
systems or improved performance. One
example of such a system is by Metabolic
Robotics in broiler facilities that control
the time of the feeding, sounds and light.
Feed efficiency is increased by 4% under
this system (The Poultry Site 2018).

While robotics and automation
improve the efficiency and the effective-
ness of labor, these changes are faced
with some challenges such as initial cost,
animal-robot interactions, and changes
associated with production. Changes
in the production can be minor, such as
using a cleaning robot in between groups
of sows in a farrowing house, or a major
rethinking of housing changes associated
with electronic sow feeders.

Research is being conducted to de-
termine the reaction of the birds to both
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aerial and ground robotics systems in
the broiler industry (Parajuli et al. 2018;
Parajuli et al. 2019). While these studies
showed an increased reaction distance to
aerial and ground robot systems com-
pared to humans, these tests compared a
novel experience of a mechanical object
with a habitual experience of the human
presence. Once birds become accustomed
to the mechanical objects, the reaction
distances are likely to change. Further de-
velopment of robotic and aerial systems
in poultry production may include op-
tions for estimating bird weight, identify-
ing and reporting non-ambulatory birds,
and possibly removing dead birds.

Use of robots in pig production is
difficult because of the curious nature of
pigs. However, the need for automation
in the swine industry has become increas-
ingly important with the public’s pres-
sure to eliminate gestation stalls. Several
European countries and some states have
banned extended confinement of pregnant
sows in stalls (Anil et al. 2003). One
long-term solution includes the use of
electronic sow feeding systems. These
systems use radio frequency identifica-
tion (RFID) tags to identify animals so
that the amount of feed can be controlled
for individual animal. Electronic sow
feeding (ESF) stations have been around
since 1982 (Olsson et al. 1986) and are
currently manufactured by several com-
panies. The challenge with these systems
is the complete change in production sys-
tems. However, with the current legisla-
tion and increasing public pressure, these
systems are becoming more mainstream.
In addition, as ESF systems become more
common, additional automation is needed
to ensure proper care of the animals. This
includes the need to detect non-pregnant
sows, weight or condition score changes,
and the need to detect illness. Boar sta-
tions have been integrated into some of
the ESF layouts. This allows for detection
of open or non-pregnant sows. Scales
are available in some ESF systems, and
estimation of condition score from depth
video/images has been reported by Con-
dotta and colleagues (2019). Stavrakakis
and colleagues (2015) and Condotta and
colleages (2019) suggest that determining
walking patterns of normal and abnor-
mal sows could be detected with a depth
video.

Recent publications suggest that
new concepts for automation in swine
industry focus on the ability to monitor
pigs to provide information about their
growth and well-being. For example,
several researchers have developed and
tested methods for estimating weights
of pigs (Condotta et. al 2018; Kashiha et
al. 2014; Kongsro 2014; Pezzuolo et al.
2018; Shi, Teng, and Li 2016; Stajnko,
Brus, and Hočevar 2008; Wang et al.
2008; Wongsriworaphon, Arnonkĳpan-
ich, and Pathumnakul 2015). This line
of research suggests that estimating
weight from depth or digital cameras is
reasonable. However, the difficulty is
the inability to track individual pigs over
time. Therefore, currently these systems
would either need to use an RFID system
to track individual pigs or simply record a
pen average.

Another example is use of automation
systems to identify feeding behavior of
individuals within a group pen (Adrion et
al. 2018; Brown-Brandl, Jones, and Ei-
genberg 2016; Kapun, Adrion, and Gall-
mann. 2016; Maselyne et al. 2017). These
researchers showed that feeding behavior
at the feed trough can be monitored suc-
cessfully and that this information may
be useful in determining illness in pigs.
Increasing the timely identification of
individual pigs with potential illnesses
within a commercial size pen of pigs
would help producers pinpoint treatment
of sick animals and prevent spread to the
rest of the herd, improving animal well-
being and ensuring the judicious use of
antibiotics. The current downside of this
system is the need for a RFID tag. The
cost, labor to install, and labor to remove
the tags at the slaughterhouse are three
apparent issues. The less apparent issue
is the decrease in value of the ear. Ears
are currently marketed as dog toys in the
United States, and by placing a hole on
the ear its value is significantly de-
creased. The development of robotics and
automation products for housed livestock,
specifically pigs and poultry, continues to
grow. This growth is being spurred by the
public pressure for changes to improve
animal well-being and decrease use of
antibiotics, and the increasing difficulty
in finding labor.

The field of ground and aerial robots
for crop production and animal agricul-

ture is a dynamic area which is advancing
at a very fast pace. These recent publica-
tions provide a comprehensive list of
additional robotic technologies under
development (Fountas et al. 2020; Fue
et al.2020; Martinez-Guanter et al. 2020;
Ren et al. 2020; Tsolakis, Bechtsis, and
Bochtis. 2019.; Vougioukas et al. 2020).

ENABLING FACTORS FOR
THE DEPLOYMENT AND
ADOPTION OF ROBOTS IN
AGRICULTURE

Machine Vision and AI
Machine vision and AI technolo-

gies are key enabling technologies for
the advancement of ground and aerial
robots. When a ground or aerial robot
passes through the field, or interacts with
livestock, it uses machine vision and AI
to identify key attributes of the crop and
the livestock, respectively. AI is defined
as the intelligence demonstrated by ma-
chines to understand their environments
and take actions to maximize its success
of achieving its goals (Russell and Norvig
2003). One of the pressing needs in plant
based agriculture (row crops, vegetables
and orchards) is to manage weeds (West-
wood et al. 2018). Machine vision and AI
technologies have the potential to manage
herbicide resistant weeds using a suite of
management strategies (e.g., mechanical
weeding and targeted spot spraying) as
there is a lack of new herbicide models.
Autonomous weed control using ground
and aerial robots could be the gateway to
increased use of robotic systems on the
farm (Westwood et al. 2018).

Early commercial applications of
machine vision and AI technologies could
be found (FarmWave https://wAww.farm-
wave.io/; BlueRiver: http://www.blueri-
vertechnology.com/) and more companies
are beginning to enter this cutting edge
domain of AI based agriculture. A signifi-
cant limitation to several machine vision
and AI tools is the need for publicly
available robust image training data sets.
Some of the first few publicly avail-
able image training datasets are Deep-
Weeds (https://github.com/AlexOlsen/
DeepWeeds), Date fruit harvest (https://
ieee-dataport.org/open-access/date-fruit-
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dataset-automated-harvesting-and-visual-
yield-estimation), and Sugar Beets (http://
www.dis.uniroma1.it/~labrococo/fds/
syntheticdatasets.html). Having access to
more publicly available training image
datasets will lead to advancing the intel-
ligence and capabilities of ground and
aerial robots.

Open source technologies play a key
role in advancing machine vision and AI
models. Google’s TensorFlow (https://
www.tensorflow.org/) is an excellent
example of an open source tool that of-
fers some of the most advanced machine
learning and vision tools. Machine
learning is a subset of AI which involves
machines learning from experiences and
data. Another important open source
technology is the Robot Operating Sys-
tem (ROS) which is a software environ-
ment aimed at creating applications for
robots (https://www.ros.org/). A ROS
environment dedicated to developing
robotic applications for agriculture is now
available (http://wiki.ros.org/agriculture).
Open source technologies are contribut-
ing to the advances in robotics research
and enabling increased number of start-
up companies to offer robotic solutions in
agriculture.

Big Data and Cyber
Infrastructure

Cyber infrastructure and improved
data flow in agriculture offer tremen-
dous opportunities that are diverse and
extensive (National Academies 2018);
yet, there are challenges from both social
(sharing) as well as technical (size,
capacity, interoperability) perspectives.
Many of the issues are similar for opera-
tions completed by autonomous robots
and for operations that include humans
as control agents. Much of the enabling
of improvements in logistics, efficacy, ef-
ficiency, and sustainable production stem
from using the data itself, sometimes in
near real time, sometimes in retrospective
analytics (Buckmaster et al. 2018). Appli-
cations for big, shared, public data (often
anonymized, but not always) include
marketing, analytics for prescriptions
and strategic yearly decisions, model
building for predictive and preventative
maintenance, and even tactical within-
season decisions. Some of these applica-

tion areas are most effective when data
sets are an agglomeration across a region.
A challenge in these (sharing) cases is
convincingly communicating of the value
(of sharing) to those who own the data to
share.

For true mining of insights, the data
must have the full backstory or context
(metadata) associated with it (Evans,
Terhorst, and Kang 2017; VanEs and
Woodard 2017). At times, the definition
of metadata and data gets blurred. For
example, the speed of the planter might
be “the data” to be interpreted since the
decision and actions are control, path
planning, or logistics of keeping the
planter boxes filled; later, when trying to
ascertain impacts of practices on pro-
duction, speed of the planter would be
metadata or context (as one of many vari-
ables which might have influenced yield).
There is a wide variety of data that could
be collected in cropping systems (Table
1). Those data elements have assorted
resolutions in both space and time, highly
varied accuracy levels and different origi-
nation points (several machines or sensor
systems); this offers a wild frontier of op-
portunity for improvement in the design
of data collection, storage, transfer, and
access systems as well as improvement
in decisions and actions on actual farms
(Evans, Terhorst, and Kang 2017).

As explained in detail in the next sec-
tion, connectivity is a key aspect of cyber
infrastructure in automated and non-auto-
mated processes. In agricultural contexts,
it is often the upload speed that is more

limiting, because control files (down-
load) are relatively small; but, the inputs
needed by cloud computing algorithms
are sometimes very large—particularly
if those inputs are images or videos. For
example, a typical UAS scouting flight
for 20 minutes over a 100-acre field
would generate a folder 4 GB in size,
containing more than 400 color images
plus video (400 ft flight elevation, images
at 30 mm resolution, and with 75% over-
lap; J. Scott, personal communication).
With only digital subscriber line (DSL)
connectivity, it will take 20 to 30 times
longer to upload the data than it took to
generate it. “Real time” is a term that
does need a bit of explanation in agricul-
tural contexts. Some data (especially for
control) must be within in milliseconds
for safety and operations sake. Some
data (such as bin or hopper status) could
have a few seconds of latency without
any significant impact. Some data (soil
organic matter, soil temperature) is more
for model and planning purposes, so
latency of even a day(s) might be accept-
able. Most importantly, the data regarding
control must be local or have extremely
high reliability and low latency. The as-
sorted communication pathways (3G, 4G,
5G, Wi-Fi, LoRa, TV whitespace) can
each play a role in data flow from remote
devices, but no single pathway will serve
as the universal economical solution.

The value of functional cyber in-
frastructure which raises the level of
data-enabled decisions and actions comes
from a blend of scouting and anomaly

Table 1. Some typical data elements for cropping systems as well as examples of
value.

Data Element Examples of Potential Value

Records of who/what/where/when Critical context for later analytics on
production and logistics

Imagery (RGB, NDVI, LiDAR, Scouting, anomaly detection, support
hyperspectral, thermal) analytics for treatment comparisons or

correlation to other sensor data
Machine sensors (location, fuel Improved control of the machine
consumption, battery status, slip, crop functions, improved system logistics,
or soil moisture, speed, spray rate, metadata for analytics regarding seed
rate) practices
Soil sensors (moisture, temperature, Improved logistics planning, influence
chemical/biological attributes) on production activities, context for

deeper analytics on other data
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detection, estimation of differences due
to treatment(s), estimation of yield, and
improvement of logistics (including
both autonomous and supporting non-
autonomous operations (Evans, Terhorst,
and Kang 2017). Much of the benefit can
be obtained without sharing data, and that
reduces risk (Department of Homeland
Security 2018); however, some of the
benefits of truly big data analytics and
models (whether descriptive based on
biological, chemical, or physical science
fundamentals, or AI) do require data
sharing to build datasets large enough to
robustly capture effects.

Regardless of whether there is “pub-
lic” sharing of data, there is always a
need for interoperability. This is currently
a dire need in both cropping and livestock
systems. For example, sharing of simple
information such as field boundaries
can be problematic because of assorted
formats, naming conventions, and com-
patibilities (but it should be seamless to
share some information aggregated at this
level by others such as the Farm Service
Agency). Even with work such as that of
AgGateway (www.aggateway.org) in the
standardized precision ag data exchange
(SPADE) project, we find that many ag-
ricultural firms are left with a data-driven
dream rather than data-enabled reality. In
the case of livestock systems, it is typical
that feed characteristics and feeding re-
cords be in one system while data regard-
ing production (milk, gain, etc.), activity
loggers, and health (and treatments) are
in other systems. Data regarding weather
or other external factors (input and prod-
uct pricing) are often public but require
programming to automate consumption
into decision tools.

Despite many diagrams to the con-
trary, data do not need to reside in a
common cloud platform for systems
to work well—in reality, that common
repository will be rare. The reality is that
machine data may be in an equipment
company’s cloud: weather may come
from a public source, genetic information
may reside in the seed company’s service,
and chemical application data may come
from a service provider. Interoperability
and substantial compatibility is needed
so that these layers of information can be
merged for insight generation (Buckmas-
ter et al. 2018). This interoperability has

layers of sharing and security protocols,
data models, and file formats. Even when
data are in a common cloud platform, the
file interoperability issues exist. Interop-
erability is improving with published
application program interfaces (APIs),
but many of the APIs are non-standard
and specific to the software, which is
unwieldy due to the number of players.
Other new developments in data models
including geohash indexing and graph da-
tabases will also facilitate data movement
and mining; the collaborative develop-
ment of APIs and ontologies (relation-
ships between knowledge representation)
should yield huge benefits of improved
compatibility. That collaborative develop-
ment should and will be via open source
efforts. Open source development has
been the boon in internet development
and adoption (Androutsellis-Thotokis et
al. 2010). Open source is a paradigm and
agreement that permits users to modify
existing code or designs with enhance-
ments or extensions. As it relates to data
movement and compatibility (hence
interoperability), open source drastically
reduces the need for duplicative work.
Solutions that work will get used, refined,
and propagated. A prime example is the
open publishing of APIs. Firms, of any
size, that want their data to work with
other data, will save tremendous amounts
of time by using, studying, modifying,
and distribution solutions that meet cri-
teria from multiple perspectives. While
open source software has been critical in
countless disciplines and industries, it has
been largely overlooked in agriculture to
date. Fortunately, this is changing and
the move toward more open collaboration
will democratize data pipeline elements
and result in platforms and data-centric
solutions that work together better and
are more widely available.

Farm Connectivity
Connectivity on farm can be thought

of as enabling data generated on vari-
ous machines and sensors to be shared
among the sensors and machines, a farm
network, and cloud-based storage and
analysis systems. Wireless connectivity
enables this data sharing to occur over
significant distances at relatively low
cost, because it does not require fixed
hard-wired infrastructure. A common and

simple example of such a system involves
wireless moisture-sensor networks, which
include sparsely installed soil-moisture
sensors with wireless-transmission
capability. Data can be transmitted by the
sensors in either a passive or an active
context. In an active system, the sensor
nodes “self-report” the data they have
collected to a remote computer system.
In passive systems, the sensor nodes
are queried through the network by the
remote computer system, and they only
report when queried.

Large commercial farms commonly
apply water, fertilizer and crop protec-
tants across whole fields in a non-differ-
entiated way. If they use some form of
precision agriculture, they typically use
management zones that are multiple acres
in size, because data are often spatially
sparse and application equipment tends
to be large, making more precise applica-
tion impossible. If growers could obtain
data at a higher resolution, square-meter
areas in a field or potentially even about
individual plants, then in the future they
might be able to apply inputs in a highly
targeted manner that is more economi-
cally and environmentally beneficial.
Farm machines are increasingly collect-
ing image and video data that require
high transmission bandwidth, and new
methods of data collection like remote
sensing with drones require a large
amount of storage, computation, and
transmission bandwidth. Furthermore,
cases exist in which post-harvest process-
ing facilities could benefit from access to
farm-collected data. At a cotton ginning
facility, for example, the cost, timing,
efficiency, and quality of processing seed
cotton from farmers can be significantly
enhanced if the facility has data on the
incoming crop with sufficient lead time
so that it can prepare to optimize onsite
batching of varying seed cotton modules,
staging and logistics, and charge appro-
priate processing fees. As a case in point,
a cotton gin in southern Texas recently
reported that their processing rate in the
2018–2019 ginning season dropped from
70 to 23 bales per hour when overly
moist seed cotton modules were brought
into the gin, costing more than $2,500 per
hour in revenue (USDA-NASS 2019).
Connectivity is thus critical for dissemi-
nation of farm data.
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The type of wireless connectivity
used depends on the needs of the par-
ticular device in the context of the given
farm. The needs can be categorized in
terms of bandwidth, range, and power
requirements, not to mention cost. While
wireless moisture-sensor networks
typically have a low-bandwidth require-
ment, devices that collect images and
video generate large volumes of data and
require high bandwidth if near-term data
delivery is needed. For example, Wi-Fi
operates at 2.4 to 5.0 GHz and while
bandwidth is large, it only has maximum
range of roughly 100 m (Tzounis et al.
2017) in the best of circumstances, so it
is largely not useful in the field. Many de-
vices use cellular service, which operates
at 3.0 to 5.0 GHz with high bandwidth of
2.0 Mbps to 1.0 Gbps, respectively. The
range of cellular service is usually several
km from the nearest tower, but many re-
mote farm fields across the United States
are well outside the range of cell towers.
Satellite connections can be useful at lo-
cations where cellular service is unavail-
able, but the bandwidth is typically much
lower and may not be suitable for rapid
transmission of large data files. The long-
range connectivity, known as LoRa, has
range of many miles, but the bandwidth
is low and it is suitable only for periodic
transmission of small data files. A few
other technologies are available but tend
to have low bandwidth and low range.

Aside from bandwidth and range is the
issue of standardization of data protocols
so that devices and computing systems
from different vendors are compatible.
The machinery industry has worked
together to develop the ISO 11783 (ISO-
BUS) standard that enables, for example,
a tractor from one manufacturer to com-
municate with a planter from another
manufacturer. However, compatibility
among data-collection devices and cloud-
based systems from different vendors is
under development. Various standard-
ization efforts, for example AgriRouter
and DataConnect, are underway for this
purpose.

The current state of wireless connec-
tivity on the farm is that it is typically
inadequate to move large data files in
a timely manner, and even small data
files cannot be transferred reliably with
consistency. Many rural areas and par-

ticularly remote farm fields do not have
wireless infrastructure, so data transmis-
sion is limited to small data packets at
times when machines are in range of cell
towers or farm-based networks. While
5G wireless technology is expanding,
even to rural towns because, in part, of
the USDA’s Rural Broadband Initia-
tive, the remoteness of a vast number of
farm fields suggests that real-time data
transmission as well as transmission of
large data files like images collected with
drones will be impractical for the foresee-
able future (Wiegman, Pitla, and Shearer
2019). On the other hand, industry is
developing standards to enable seamless
utilization of farm data across vendors.

Interdisciplinary Agricultural
Workforce

Various agricultural industries have
installed local area networks (LAN) to
monitor critical specialized systems.
Equipment manufacturers such as John
Deere, Case-IH, and AGCO would not
even consider running their facilities
without the IoT (Internet of Things—
many devices connected together with
sensors) technology that allows them
to monitor, analyze and provide reports
of their systems. Technicians assess
equipment repair needs from the local
dealerships and then make needed repairs
based on electronic diagnosis of the is-
sues on the farm. Grain companies such
as ADM, Bartlett, Zen-Noh, and Cargill
also use IoT technology to manage their
grain handling systems. Ironically, the
one entity that essentially feeds these
corporations—the U.S. farmer—has used
LAN and IoT technology at a much lower
rate than a typical consumer to facilitate
food production and food safety on their
farms. Some IoT systems are deployed
for irrigation systems, milking systems,
swine facilities, and more, but these sys-
tems still require some technical expertise
to operate. Many of these systems are
such that the farm manager must travel
to the location to make an adjustment to
the system after an educated guess from
the data allowed him / her to identify
the issue(s) before the data was lost or
animals / crops were negatively impacted
to drought, disease or a number of other
conditions.

These IoT systems will be an integral
part of the ground / aerial robots that are
moving into the agricultural production
sector. These IoT systems will imme-
diately require technical assistance and
the typical IT technician will neither be
ready nor want to work in a pig barn try-
ing to determine why the IoT system is
not performing. Hence, a new profession
will emerge; individuals with a strong
propensity toward quantitative systems
thinking will be needed to perform the
updates needed to IoT related systems
that are used in the agricultural environ-
ment. There are examples of equipment
manufacturers (e.g., Case IH, AGCO,
and John Deere) offering autonomous
concepts for field operations such as
planting and spraying. The activities in
this direction will necessitate a workforce
inclusive of technicians who are adept at
autonomous and electronic technologies.
Local implement dealerships have hired
a team of IT IoT professionals. Many
have apps on their phone and the local
farmer is expecting them to monitor their
equipment. The expectation stems from
the annual fees charged by companies for
software and cloud services.

Moving forward, technicians to repair
ground and aerial robots, the systems
used to connect these robots to the cloud
for real time (dynamic) review of the
data, software development, and manage
the remote updates will be needed. These
technicians will not only need an under-
standing of the technologies used but
also the environments in which these
technologies are placed. The advent and
popularity of video conferencing systems
such as Zoom, Webex, GoTo meeting,
and Skype systems will foster the adop-
tion of IT personnel who spend more
time working from home rather than
working entirely from a business office.
As society adopts these business and
technology practices, the support system
for IoT systems will both grow and be-
come a leaned upon and needed support
system. There are additional topics that
the Farm IT professionals will need to
address:
▪ Firewalls / security / privacy;
▪ The increase in data driven decision-
making;
▪ The IoT system itself as the “man-
ager”; and
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▪ BYODx – the increase in Bring Your
Own Digital eXperience;
The question then becomes how many

people will be needed for managing IoT
systems on the farm? What knowledge,
skills, and abilities will they need to be
effective? Moreover, how soon will they
be needed? In the next decade, it is an-
ticipated that there will be a 35% deficit
of graduates with relevant education and
experiential opportunities to fill science,
technology, engineering, and mathemat-
ics (STEM) related jobs in agriculture
and natural resources industry (Goeker
et al. 2015). Engineering and technology
play key roles in developing scientific
tools of discovery and in developing
methods to assist scientists working
in agricultural sciences domain (NAE
Grand Challenges for Engineering 2008).
Providing interdisciplinary experiential
learning opportunities to students in agri-
cultural majors will be critical to address
the demands of the future farm where use
of robots could be a new normal. Al-
though projects at the graduate program
level provide opportunities for interdis-
ciplinary training, current undergraduate
agricultural science curriculums do not
support intentional interdisciplinary train-
ing. Changes are required to traditional
agricultural education curriculums to
prepare workforce who will be working
at the intersection of engineering/technol-
ogy, and agricultural and food sciences
in both academia and industry. Elements
of robotics and automation, automated
sensor data collection, cloud comput-
ing, wireless connectivity and IoT, and
data science have to be embedded into
undergraduate education curriculums of
agriculture majors.

Liability, Security, and Data
Privacy

Agricultural robots will bring new li-
ability concerns to farmers. Who is liable
if a farmer’s robot causes injury to people
or property? Liability and legitimate
safety concerns are why small UAS (<50
lb) and UGVs (<500 lbs) will likely be
the first autonomous systems widely
commercialized. Traditional negligence
cases require an injured party to prove
causation, linking the careless act to the
injury.When injury or damage results

during autonomous robotic operation,
lawyers for tort victims will cast blame
in three places—the software developer
(or manufacturer), the retailer, and the
owner. These parties will blame each
other in turn. This tension will make the
contract license or lease for agricultural
robots crucial to apportioning liability,
since these agreements could exculpate
the software developer even if a coding
error caused the injury. Software license
agreements may also include indemnity
provisions that require the robot owner
(farmer) to defend the robot manufacturer
in the event of a negligence claim while
under the farmer’s control.

Security is another legal concern. The
Department of Homeland Security has
warned of potential problems arising
from coding errors, delayed software
patches, and hackers (Department of
Homeland Security 2018). Disgruntled
employees who work for robotic manu-
facturers are also a threat to security
of these devices. An isolated incident
may not be much cause for alarm, but
concern multiplies when thousands of
devices running the same software are
all compromised at once. Designers and
manufacturers must make sure robotic
technology is built with the latest security
measures, and that timely updates are
provided to address new risks.

Finally, robotics manufacturers should
not forget data privacy and ownership
concerns. Robotic technology has the
potential to generate enormous streams
of data often linked to the manufac-
turer’s cloud. When polled, farmers have
expressed concern about what happens to
their agricultural data privacy with new
technology (Wall 2018). Similarly, many
farmers have indicated that they do not
understand the licensing agreements and
privacy policies they are asked to sign
when purchasing or leasing new ag tech-
nologies. Legally, the United States lacks
a comprehensive data protection statute
like the European Union’s General Data
Protection Regulation (GDPR), however,
the industry has developed a private data
transparency certification (www.agdata-
transparent.com) that awards companies
that clearly answer certain questions
about storage, handling, sharing and dis-
posal of the agriculture data they collect.
There remains a need for clear, concise

agreements and policies between technol-
ogy providers and farmers.

CONCLUSIONS
▪While labor challenges are driving the
demand for automation and robotics
in specialty crop production, optimal
management of production inputs is a
primary motivation for using ground
and aerial robots in row-crop produc-
tion.
▪Use of UGVs in row-crop produc-
tion has the potential to provide scale
neutral technologies to producers with
Farming-as-a-Service (FaaS) model. In
a system where multiple small UGVs
could be used in place of one high
horsepower manned field equipment,
adverse effects of soil compaction
could be minimized. When multiple
UGVs are used, even if one UGV is
down for repair and maintenance, oth-
ers in the fleet can still continue to do
the operation thereby minimizing the
risk of halting the entire operation.
▪UASs are effective technology tools
that are used in both row and specialty
crop production for general scouting
and special applications, respectively.
High initial capital cost, limited flight
time, and low payload capacity are
limiting their widespread use. The
UASs industry is advancing at a fast
pace and is starting to offer systems
that can handle heavy payloads with
the ability perform material application
(e.g., spraying).
▪ In animal agriculture, robotic milking
stations are matured and commercially
available, whereas, robotics in poultry
and swine industry is still evolving.
In addition to automating tasks in the
animal barns, robots collect environ-
mental and animal data that has the
potential for early disease detection
and improved animal welfare.
▪ There is a need for further research
in assessing economic benefits of us-
ing ground and aerial robots in crop
production. Interdisciplinary research
efforts with teams consisting of en-
gineers, agricultural economists, and
technology companies are needed to
fully understand the economic benefits
of using agricultural robots.
▪ Autonomous farming using multi-pur-
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pose robotic machines presents better
economic viability than highly special-
ized machines, because then a large
capital investment would not have to
stay idle for a long time. Developing
multi-purpose robots would, therefore,
be another important aspect in the fu-
ture to improve the viability of ground
and aerial robots.
▪ High-speed network connectivity
across rural America and data compat-
ibility and inter-operability between
systems are critical for adopting
robotic and AI-based technologies to
improve production efficiency.
▪ Converting data to actionable insights
require full context or backstory of
the data and the collection methods.
Interoperability of datasets is key for
seamless sharing of data among mul-
tiple stakeholders to generate useful
information for decision making.
▪ Experiential learning opportunities in
the areas of ground and aerial robots,
IoT, and AI are currently missing
in traditional agriculture educa-
tion curriculums. Curriculums need
to introduce these interdisciplinary
experiential learning to train the next-
generation agricultural work force.
This will ensure that the work-force is
prepared for the agricultural land-
scape of the future where it might be
required for personnel to be competent
in traditional agricultural sciences
along with an understanding of how
elements of mechatronics, data sci-
ence, and AI interacts with crop, soils,
and animals.
▪Ground and aerial robots also provide
an opportunity to attract new genera-
tion into farming, which, otherwise, is
expected to face a crucial challenge in
the future as the current generation of
farmers retires.
▪Deployment of ground and aerial
robots in production agriculture could
result in liability, security, and data
privacy concerns. Industry is address-
ing data privacy concerns through
programs such as data transparency
certification, however more efforts
are needed to address the liability and
security concerns of ground and aerial
robots.

TASK FORCE
RECOMMENDATIONS
▪ Farmers have always been reticent
to adopt new technologies void of a
proven ROI. Low adoption rates and
narrow markets for these products
require technology start-ups to rely on
wider margin to remain economically
viable. Researchers and technology
companies need to work closely with
the early adopters to quickly evaluate
ROI of automated/robotic to support
increased adoption of appropriate
technologies.
▪ Rural high-speed broadband connec-
tivity is essential for the successful
deployment ground and aerial robots.
Investments to support public-private
partnerships for developing and
building out innovative wireless IoT
solutions are needed. Robust connec-
tivity among autonomous systems will
simplify exchange of information for
efficient machine coordination while
enabling data transfer to Edge and
FOG computing hardware and remote
computing infrastructure.
▪ Safety, operational, and performance
standards must be developed in
support of ground and aerial robot
deployment in agricultural production
environments. Standards are neces-
sary to address product liability for
both original equipment manufactur-
ers (OEMs) and start-up companies.
Standards also shorten product design
cycles while ensuring the safe integra-
tion of ground and aerial robots to
production environments.
▪ Educational institutions, government
agencies and the private sector must
initiate a dialog with policy makers
regarding data privacy, security, own-
ership, and transparency in agriculture.
These efforts will ensure open dia-
logue on ethical data use, and return
of value for data generators and users.
Perhaps it is time to consider HIPAA-
like privacy rules for agriculture?
▪ The regulatory environment must
keep pace with the changing land-
scape of agriculture to fully realize
the expected benefits stemming from
the deployment of ground and aerial
robotic systems in crop and livestock
production environments with reduced

reliance on human labor.
▪ Robust educational programs are
needed for updating policy makers on
technology expansion in agriculture. It
is essential for stakeholders, industry
professionals and government agen-
cies to remain abreast of recent devel-
opments in the private sector.
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