A Life-cycle Approach to Low-invasion Potential Bioenergy Production

Bioenergy is being pursued globally to decrease greenhouse gas emissions and provide a reliable energy source.

- Invasive species are among the top five threats to global biodiversity.
- Once established, invasive plant eradication is difficult and expensive except in very small areas.
- Predicting where and which species will become invasive is difficult.
- Invasion mitigation cannot be limited simply to choosing the right species and planting it.

Invasion risk mitigation—Cultivar selection

- A weed risk assessment is a recent and fast-developing tool for assessing the invasion risk associated with a plant.
- Environmental niche models seek to forecast where a nonnative species will ultimately spread from points of introduction.
- Mechanistic modeling can be conducted in a laboratory, but field experiments will be required to yield cogent estimates of invasion likelihood.

Invasion risk mitigation—Production

- Preintroduction germplasm selection and screening is unlikely to succeed by itself.
- No single prescription exists for decreasing invasion risk associated with bioenergy crop production.

Invasion risk mitigation—Closure

- Lack of planning for bioenergy plantations may result in biological invasions that then become a public responsibility.
- New owners of property should be made aware of the possibility that the former bioenergy crop will continue to reemerge for some time.
- Extirpation (complete removal) can be an intensive, time-consuming process.

Invasion risk mitigation—Policy tools

- Government grant and incentive programs can encourage use of mandatory risk mitigation practices throughout the product life cycle without requiring all growers to comply.
- The Renewable Fuel Standard also now incorporates management measures to mitigate escape risks.
- Risk management plans must identify and incorporate management measures throughout the bioenergy life cycle.
- Consideration of existing bioenergy policies and programs in the United States suggests a partial adoption of a life-cycle approach.

Exit strategy

- Several regulatory strategies can encourage producers to internalize costs at the plantation and project levels and decrease risk to the public.
- Several U.S. states that require permits for cultivation of commercial-scale bioenergy crops currently require financial assurance as part of their permitting processes.
- Financial assurance is a useful, but limited, disincentive to abandonment of bioenergy plantations.
- The centralized structure of bioenergy production offers a solution that may resolve issues of liability.

Experts to Contact for More Information:

Jacob Barney (inbarney@vt.edu); Adam Davis (asdavis1@illinois.edu); Read Porter (porter@eli.org); Daniel Simberloff (dsimberloff@utk.edu)

To view the complete text of this CAST issue paper, click <u>here</u> or visit the CAST website (<u>www.cast-science.org</u>) and click on Publications. For more information about CAST, visit the website or contact the CAST office at 515-292-2125.