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Introduction

Water is a crucial input for global food productivity in all 
aspects of agricultural production, from crop cultivation 
to livestock management to other aspects of the value 
chain (FAO, 2023). Irrigation remains vitally important in 
the United States and worldwide as a means to enhance 
agricultural productivity. Irrigation provides stability for 
agricultural productivity, enhances yield quantity and 
quality, and plays a vital role in sustaining production (Irmak 
2023). Considering the negative impacts of climate change 
on agricultural production and management practices, 
especially in terms of increases in air temperature, vapor 
pressure deficit, and increased variability in precipitation 
timing, amount, and intensity, irrigation scheduling can be 
considered one of the most effective management tools 
to mitigate climate change impacts on the production 
of agricultural commodities, especially with respect to 
managing drought stress. Because drought and/or limited 
water resources are major limiting factors for food and fiber 
production worldwide, especially in dry regions, a substantial 
portion of the increase in crop production and crop water 
productivity (i.e., crop yield or biomass production per unit 
of irrigation or evapotranspiration) to meet the world’s 
food and fiber demands will most likely stem from irrigated 
agriculture (Irmak 2015a, b). With the projected need of 60% 

more food production to achieve food security by 2050, the 
challenge is how to achieve this goal with the same or even 
reduced water resources without sacrificing water’s other 
ecological services and functions. The challenge is elevated 
even further when other stressors to this resource, such as 
climate change, pollution, poor management and policy, 
and landscape alterations, are taken into consideration. 
Agriculture, which currently accounts for 70% of all water 
withdrawals globally, will be affected by these challenges, 
yet paradoxically, it holds the key(s) to the solution for 
food security and water scarcity in a rapidly changing 
world. Improving and expanding irrigated agriculture can 
directly increase food production (as compared with 
rainfed), mitigate yield decline during drought, improve 
the economic viability of existing cropland, and potentially 
reduce water usage in relatively inefficient systems. There 
is a concerted effort across the globe to perceive irrigation 
water use as part of the solution rather than a contributor to 
the environmental problem (ICID 2022). Thus, meeting the 
food and fiber demands of an increasing world population 
requires producing more commodities with equal or lesser 
resources, which requires enhancing crop water and nutrient 
productivity. These enhancements can aid in reducing 
within-field water losses and increasing crop production 
efficiency by applying the proper amount of water at the 
right time and at the right place in the production field 
utilizing precision irrigation technologies.

This paper discusses the role of irrigation technologies and 
complementary precision crop management in addressing 
these challenges in water resources and food production. 
First, the paper defines what precision irrigation entails, 
how it can improve performance efficiency, and the 
technologies that apply this concept to different irrigation 
systems. This includes gravity irrigation systems, which are 
considered the least efficient among all systems, yet are still 
used extensively in the western U.S. (Figure 1) and are the 
dominant irrigation method globally. Regardless of irrigation 
type, decision support systems and fertigation can improve 
the performance of irrigated production, which is discussed 
in the second chapter. This area is increasingly utilizing new 
technologies, such as soil water content sensors, mobile 
applications for water management, computer simulations, 
and evapotranspiration (ET) monitoring. This chapter is 
followed by discussions of the benefits these precision 
irrigation tools can provide. Chapter four discusses the state 
of adoption of precision irrigation technologies. Despite 
the promising opportunities and benefits, adoption is not 
yet at the optimum level in which irrigated agriculture 
can benefit from its maximum potential. Challenges and 
barriers to adoption will be discussed from different angles 
(sensors and sensing platforms) and sectors (integration 
and extension). Chapter five discusses other complementary 
technologies and themes related to precision irrigation, 
with the goal of bolstering the adoption rate and impact 
of these technologies to irrigated agriculture. The last 
chapter summarizes the benefits and risks (economic, 
environmental, and agronomic) of precision irrigation as well 
as future needs in research and extension/education.
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General Overview of Precision Irrigation

Irrigated agriculture is critical to meet the increasing 
demand for agricultural products. On a global scale, water 
used in agriculture represents roughly 70% of all water 
withdrawals (FAO 2020) and land dedicated to irrigated 
agriculture totals approximately 3.67 million km2 (Meier et 
al. 2018). Irrigated cropland produces double or triple the 
yields of rainfed crops in semiarid and arid regions (Musick 
et al. 1994; Norwood 1995; Evett et al. 2020a). However, 
today more than ever, water scarcity and water quality 
issues are challenging sustainable water management. 
The situation is greatly exacerbated by climate change, 
population growth, declining water resources, and 
competition for water from other users and economic 
sectors. Without irrigation, crop yields are unstable in areas 
where rainfall is unpredictable (Oweis et al., 1998; Lamb 
et al., 2011); subject to significant loss where rainfall is 
minimal, such as in semi-arid and arid regions (Klocke et 
al., 2012; O’Shaughnessy et al., 2014); and susceptible to 
substantial crop failure during periods of heat stress and 
drought (Lobell et al. 2013; Rippey 2015; Lesk et al. 2016; 
Otkin et al. 2016). 

Using irrigation to improve the quantity and quality of 
grain yield is an essential agricultural practice (Sadler 
et al. 2005), especially in arid and semi-arid areas. The 
irrigation sector accounts for more than half of global 
freshwater consumption (Johansson et al. 2002). Yet, this 
water-demanding sector is compelled to optimize water 
usage more strategically due to the increased competition 
from expanded water-dependent industries (e.g., energy, 
mining, manufacturing, etc.), the increased public concern 
over water availability and quality, the rising cost of water 
and energy resources, and the increased frequency of 
extreme climate events.

Historically, irrigated agriculture in the United States was 
concentrated in the west; however, over the past 70 years, 
there has been a decline in irrigated acreage in this region 
and a shift of irrigated cropland eastwards and northwards 
into the Mississippi Delta, Southeast region and Northern 
Plains regions, respectively. Irrigation systems in the 
U.S. have become more efficient in recent years, mainly 
due to the widespread conversion from gravity flow 
to pressurized irrigation systems (USDA-NASS 2019). 
However, due to water scarcity, there is continuous 
pressure on the agricultural sector to improve irrigation 
application efficiency and yield per unit of water used by 
the crop (crop water productivity).  

Site-specific water management, or delivering water to 
a specific location, has been in existence for thousands 
of years (Evett et al., 2020b) and can be achieved with 
gravity flow or pressurized irrigation systems. An example 
involving gravity flow systems is the automation and 
control of canal water to improve water management 
(Merkley et al. 1990) and overcome unreliable or uneven 
water distribution (Shahdany et al. 2018). In pressurized 

systems, zone-controlled drip irrigation is used in vineyards 
and orchards to apply water during specific growth stages 
to improve fruit quality and water use efficiency (Katz 
et al., 2022). For sprinkler irrigation systems, moving line 
source systems, also known as traveling trickle (Howell 
and Phene 1983) or mobile drip irrigation (Kisekka et al. 
2017; O’Shaughnessy and Colaizzi 2017), are under trial to 
investigate application efficiency and reduction in water 
losses from evaporation and high wind speeds. Most 
moving sprinkler irrigation systems can apply variable 
amounts of water laterally along the direction the irrigation 
system travels using speed control. Variable rate irrigation 
(VRI) hardware in the form of zone (a bank of sprinkler 
nozzles) or individual nozzle control allows watering rates 
to be varied along the lateral, as well in the direction of 
sprinkler movement. Prescription maps for VRI systems 
can be useful to customize application depths based on 
variable soil textures within a field or to withhold irrigation 
over non-arable areas, such as creeks, ponds or non-
cropped areas, that are located within an irrigated field 
(Pierce 2010). Finally, greenhouse and vertical cultivation 
systems integrate automation and ecological control 
of the growing environment (temperature, light levels, 
humidity, carbon dioxide, etc.) with site-specific water and 
nutrient management for specialty crop production (Lu 
and Grundy 2017).

Precision irrigation (including variable rate irrigation) 
may include a variety of technologies and practices to 
achieve precise application rate, placement, and timing 
of irrigation water to a crop’s root zone to optimize crop 
water use. With increased popularity and advancement in 
variable rate technologies, the concept of VRI is becoming 
more prominent (Sui et al., 2015; Evans et al., 2012; 
Corwin and Lesch, 2003). This approach aims to reduce 
water wastage and increase crop yield by controlling the 
application of water with the right amount at the right 
time (via a scheduling tool) and at the right location. 
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Various commercial VRI systems have been available 
for several years and have received increased attention 
from producers and irrigation specialists who search for 
innovative strategies to improve water productivity and 
conservation.

Research shows that VRI can achieve an average of 
10-15% and up to 50% reduction in water consumption, 
depending on the efficiency of system components 
as well as the specifications of the irrigation sites, 
compared to uniform management (Council of 
Canadian Academies, 2013; Sadler et al., 2005). With 
the combination of other technologies, such as proximal 
soil sensing, global navigation satellite systems (GNSS), 
geographic information systems (GIS), and wireless data 
communication, VRI allows for fine-tuning the application 
of water to meet site-specific crop requirements. This 
subsequently helps to maximize crop yield and minimize 
water and/or energy consumption. Approximately 99% 
of VRI systems are designed to retrofit a center pivot 
irrigation system, which is more efficient and less labor-
intensive than other types of moving irrigation systems 
(Evans et al., 2012). 

In brief, a center pivot VRI system comprises a pivot 
rotating a pipe carrying multiple sprinkler nozzles centered 
in an agricultural field. Generally, two types of VRI systems 
are available: Speed Control (SC) and Zone Control (ZC) 
(Oliver et al., 2013). Speed Control keeps a constant water 
flow from nozzles while altering the pivot travel speed in 
angular increments as small as 1 degree. The application 
amount is then varied locally within each radial sector. Zone 
Control allows higher levels of irrigation control as the pie 
wedge-shaped sectors can be subdivided into smaller field 
segments by adding irrigation control zones along the 
lateral pivot arm. However, Zone Control is not restricted 
to subdividing the wedges and it should be able to handle 
roughly any shape of management zone, within the limits 
of the irrigation system design. The application amount is 
then allocated into each field segment, whose area is varied 
according to the size of angular increments, distance from 
the pivot point, and the number of control zones. 

Microirrigation technologies (microspray, surface drip, and 
subsurface drip irrigation) also have advanced capabilities 
for precise placement, timing, and rates of irrigation. 
According to Lamm, et al. (2021), subsurface drip irrigation 
(SDI) has continued to expand in recent years with 
development and ongoing research of technologies and 
management strategies for application to an expanding 
variety of crops. Despite some persistent challenges, there 
is still opportunity for further expansion of SDI. Variable 
rate drip irrigation is now being used in vineyards to 
apply precise amounts of irrigation to specific irrigation 
zones, reducing variability in yield and quality (Nadav and 
Schweitzer, 2017). Research is also underway to develop 
variable rate drip emitters that can be controlled remotely 
to enable field-scale variable rate drip irrigation systems 
(AL-agele et al., 2021). With good design, installation, 

maintenance and management, microirrigation systems 
offer potential for achieving high application efficiency 
and application uniformity, and hence precision in 
placement and rate of applied water. 

Spatially variable crop water needs can result from 
differences in microclimate, field topography, soil physical 
properties such as soil texture, apparent electrical 
conductivity, salinity, and pest or disease infestation 
(Smith et al. 2009). Precision irrigation technologies 
combine site-specific irrigation systems with sensor 
feedback to detect differences in crop water status in 
space and time (over a growing season) (Figure 2). These 
technologies, when managed and functioning properly, 
apply water in the right location, at the right time, and 
in the right amount. Several academic, government, and 
private institutions are independently developing precision 
irrigation systems in the U.S. (Evett et al. 2020c; Zhang et 
al. 2021) and working with farmers to increase adoption 
of water-smart technologies (Bondesan et al. 2019; Ortiz 
et al. 2021). Information from the sensors provides input 
for models or algorithms whose outcomes can be used 
to predict crop growth, monitor crop status, or schedule 
irrigations. Pressurized systems in the form of moving 
sprinklers or microirrigation systems also are generally 
well-suited to automation, offering relatively easy 
application with emerging “smart” irrigation technologies 
and controllers. An example is the ARSPivot software 
(Andrade et al 2020) integrated with the Irrigation 
Scheduling Supervisory Control and Data Acquisition 
(ISSCADA) system (Evett et al. 2020), which uses sensor 
feedback to recommend scientific irrigation requirements.

Utilization and Benefits of Precision Irrigation 
Technologies 

Precision irrigation technologies implemented alone or 
in combination with improved cultivars could be used in 
water-limited regions to improve crop water productivity or 
crop quality. For example, precision irrigation in vineyards 
or orchards could improve the quality of fruit and raise the 
value of the product (Bahat et al. 2019; Cohen et al. 2021). 
Precision irrigation technologies typically incorporate 
automation and control by monitoring crop or soil 
water status, predicting when to apply an irrigation, and 
automatically turning the irrigation system “on” and “off”, 
thereby offering convenience and time savings to farmers. 
The application of precise amounts of water to exact 
locations within an open field or in a controlled environment 
could be more cost-effective and environmentally favorable 
than uniform application of water. Other potential benefits 
of precision irrigation include minimizing water wastage, 
aiding in compliance with regulatory requirements for water 
allocation, and improving yield per unit of water applied 
where water is limited. Smart irrigation systems could 
help develop strategies to mitigate unpredictable rainfall 
and increase the resilience of irrigated agriculture from 
climate change by enabling adaptive control. However, 
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the economic return versus the cost of VRI and precision 
irrigation technologies must be carefully considered 
(Sharma and Irmak 2020; O’Donnell et al. 2023), not only at 
the agronomic or irrigation engineering and crop science 
fields, but also in production fields. Their implications for 
economic and environmental services also need to be 
quantified, demonstrated, and disseminated for a wider 
adoption (Irmak et al. 2012).

Decision Support Systems for Precision 
Irrigation 

Irrigation scheduling technology

The amount of water required to maximize yield and/or 
crop water productivity varies depending on the crop, the 
growth stage of the crop, and the environmental demand. 
Precision irrigation systems can be managed to adapt 
water applications to different crop growth stages or crop 
evapotranspiration requirements within the growing season. 
Adaptation requires fundamental information provided by 
the farmer (crop type, planting date, soil type, water stress 
thresholds, and soil water depletion thresholds) to predict 
crop growth stages. Data collected from sensors, such as 
soil water content, plant (canopy) water stress sensors, and 
nearby weather data, can be used to adjust irrigation control 
strategies throughout the growing season (McCarthy et al. 
2010 a, b). Adaptative irrigation control strategies could also 
use historical information to predict rainfall and help manage 
irrigation timing. 

Management zones 

Management zones (MZ) are areas within a field that 
have similar features and can be treated in a like manner 
or managed as a separate area. The boundaries of an MZ 

can be static or dynamic. As of today, most MZ are static, 
meaning that the physical boundaries of the zones remain 
the same over time. These zones are typically established 
based on physical soil textural or hydraulic properties, 
soil electrical conductivity maps, topographical or digital 
elevation maps, and historical yield data (Bevington et al. 
2019, Cohen et al. 2021). Although MZ boundaries may be 
static, prescription maps for these areas can be dynamic 
to address changes in crop water status over time. It is also 
possible that MZ boundaries can be dynamic when using 
aerial or satellite imagery; however, software development 
is needed to downscale the new boundaries into a format 
that is usable by a moving irrigation system or by developing 
variable rate emitters for drip irrigation systems. 

Whether management zones are static or dynamic, it 
is necessary to upload MZ boundaries to the irrigation 
controller or the nutrient application equipment. Different 
methods can be used to delineate MZs; examples include 
manual methods by overlaying a semi-transparent gridded 
map of a field over a Google Earth image and using GIS 
mapping software to draw MZ boundaries based on physical 
features of areas that do not yield well or are non-arable. 
Statistical methods, such as kriging, cluster analysis, and 
multivariate regression, can be used to partition spatially 
variable data into homogeneous clusters to develop MZs 
within in a field (Fraisse et al. 2001; Basso et al. 2007; 
Haghverdi, et al. 2015; Peeters et al. 2015; Bevington et al. 
2019; Ohani-Levi et al. 2019). Statistical methods can also be 
used to provide the optimal number of MZs in a field, a value 
that is usually based on economics (Figure 3). Satellite and 
drone imagery has been very useful in providing attributes 
used in MZ delineation. The attributes include hydraulic 
conductivity curves; soil physical properties (texture, bulk 
density); water retention curves; shallow and deep soil 

Figure 2. Graphic showing different types of 
sensor feedback monitored at different scales 
used for site-specific irrigation management of 
cropped fields.
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apparent electrical conductivity (ECa); canopy and bare soil 
reflectance measurements; crop yield maps; non-invasive 
soil information; soil properties; digital elevation mapping; 
and terrain information (Morata, 2020; Flint et al., 2023). 
However, all these variables are very difficult to map at 
usable spatial resolution and their beneficial utilization for 
MZ delineation can result in variable successes. 

The boundaries of a MZ that can be effectively managed 
by center pivot or linear move irrigation systems equipped 
for VRI are influenced by the way in which different 
manufacturers implement VRI for their irrigation systems. 
Some manufacturers use an underlying grid of trapezoids 
(for center pivot systems) or rectangles (for linear move 
systems); the areas correspond to the smallest areas for 
which irrigation amounts can be individually controlled by 
the VRI system. An MZ for a VRI system using an underlying 
grid can be created by grouping a set of areas with similar 
characteristics. Thus, the boundary of the MZ will be 
determined by the outer perimeter of all the grouped areas 
that are part of the MZ (Figure 3). Other manufacturers 
use a different approach, where an MZ is delimited by a 
set of points that correspond to the corners of the MZ. 
The geographic coordinates of this set of points must be 
obtained to generate the MZ.

Figure 3. Grid of trapezoids upon which six Management Zones (MZs) 
were generated using the ARSPivot software (Andrade et al. 2020) by 
grouping six sets of trapezoids with similar characteristics. The red line 
represents the angular position (61°) of a center pivot Variable Rate 
Irrigation (VRI) system.

Soil water content and plant stress monitoring 

Soil water monitoring

Precision irrigation scheduling based on soil water sensing 
involves monitoring soil water content in the root zone—at 
two or more depths, in the case of soil water sensors—
until a pre-established threshold is reached. Irrigation 
water is then applied to replenish soil water depletion in 

each management zone. Soil tension (matric potential) is 
not directly measured but is a surrogate variable strongly 
influenced by, for example, permittivity, resistance, travel 
time of broadband step pulse, neutron intensity, etc. 
Soil water sensors can also be used to track root water 
uptake dynamics characterized by sharp declines in water 
content during the day and negligible changes in soil water 
at night. Examples of commercially available soil water 
sensors include soil water potential sensors (tensiometers), 
resistivity-based sensors (e.g., gypsum block), capacitance 
sensors, sensor-based on time-domain (TDR), and frequency 
domain reflectometry (FDR). Neutron probes are the most 
accurate method to measure soil water content as a low-
level radioactive source is lowered into an access tube 
near the plant’s root system and measurements are taken 
at multiple depths. Neutron probes are primarily used only 
in research and not in production fields because of the 
extensive labor involved in using the instruments, their high 
cost, and the regulations related to radioactive material 
(source). Passive neutron probe sensors called cosmic ray 
neutron sensing are beginning to be commercialized. The 
advantage of this sensor is that it has a footprint scale of a 
few hundred meters. 

Since soil water content is not measured directly, site-
specific calibration must be done for each sensor to convert 
a surrogate soil variable to soil water content. Another 
disadvantage of most commercially available sensors is 
that they sense a very small soil volume, which results in 
variability between sensor replicates, making interpretation 
very difficult. While the science behind how these different 
sensors operate has not changed for decades, significant 
improvements in electronics and data communication 
protocols have resulted in lower costs and seamless real-
time monitoring (Kisekka et al. 2022). However, most 
growers use soil water sensor data to qualitatively assess 
trends in soil water dynamics, but not to determine actual 
soil water content. Because precision irrigation requires 
recommendations for irrigation depths and often involves 
multiple MZ, the challenges are to determine the optimum 
number of soil moisture sensors to install in each MZ and 
to provide actionable information. There are many soil 
moisture sensor companies and the industry has evolved. 
One trend has some ag tech companies that sell data 
service charging growers an annual or seasonal subscription 
to access soil water data (e.g., Hortau, Irrometer Company, 
Sentek Technologies, METER, GroPoint, Acclima Inc., etc.) or 
receive irrigation scheduling recommendations (GoAnna Ag, 
GroGuru, Prospera).

In agricultural production and natural ecosystem fields, 
heterogeneity in soil moisture can exist due to numerous 
factors, including landscape/topography; cropping system/
vegetation types and their characteristics; soil physical, 
chemical, and hydraulic properties; meteorological/
climate variables, especially non-uniform distribution of 
precipitation; intended or unintended (wind drift, sprinkler 
malfunction, etc.) non-uniform irrigation applications; soil 
management practices, including tillage management; 
nutrient management; and other variables (Irmak et al., 2022; 
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Wilson et al., 2004). Thus, in addition to soil water sensing 
technology performance and adaptability in different soil 
types, spatial variability should be accounted for in various 
agronomic management practices, including practicing 
effective irrigation management (Irmak et al., 2022). 

Soil-water and plant stress monitoring

Precision irrigation scheduling based on plant water status 
monitoring involves the use of sensors that measure water 
stress directly (e.g., pressure chamber) or indirectly (e.g., 
dendrometers). Plant water status monitoring for precision 
irrigation is commonly used in specialty woody perennial 
crops, e.g., almonds, citrus, pecans, and grapes, as well as 
agronomic row crops such as soybean, maize, sorghum. 
Midday stem water potential (SWP) has been proven as the 
best indicator of plant water status because it integrates 
soil factors for the entire root zone and environmental 
conditions (Fulton et al. 2014). SWP measures the water 
tension in the plant; low stem values are related to low 
sap-flow velocities and can be caused by low soil moisture 
(Kume et al., 2007). SWP is dynamic and is not only affected 
by soil water content but also environmental conditions 
and management. SWP changes diurnally and seasonally, 
and it is a more difficult method to develop absolute 
general thresholds for triggering precision irrigation events 
as compared with monitoring soil water content. For this 
reason, SWP measurements should be benchmarked against 
a reference or baseline SWP for non-water stressed trees 
under the same environment (Kisekka 2022). Measurements 
of midday SWP are usually collected around solar noon 
or between 1 and 3 p.m. when SWP is minimum (i.e., most 
negative). In some crops, such as grapes, leaf water potential 
(LWP) is used. LWP does not require placing a leaf into an 
aluminum bag before placing it in the pressure chamber and 
tends to be quicker to measure. However, it is more sensitive 
to atmospheric demand and tends to be more variable 
compared to SWP. Although SWP is preferred, measurement 
of midday SWP is labor-intensive, which has contributed to 
its lack of widespread adoption in precision irrigation.

To overcome this challenge, recent research and 
development has focused on making sensors that can 
continuously measure SWP. These sensors can be broadly 
categorized into osmometers and micro-tensiometers. 
The osmometer sensors measure pressure changes due 
to changes in osmosis of the chamber fluid. The sensor 
has a semi-permeable membrane that allows water 
movement between the tree xylem and the sensor fluid 
chamber (Meron et al., 2015). The change in pressure 
measured by the sensor can be interpreted in terms 
of stem water potential. Other types of SWP sensors 
act as micro-tensiometers. Micro-tensiometers are 
based on tensiometry, a technique for measuring the 
chemical potential of stretched liquid water based on 
a thermodynamic equilibrium between the stretched 
water and its vapor (Pagay, 2014). An example of 
microtensiometer SWP is the FloroPulse stem water 
potential sensor (Kisekka, 2022). Overall, research has 
shown good agreement between SWP sensors and 

the pressure chamber, which is used as the scientific 
benchmark for SWP monitoring.

Plant water status monitoring for implementing precision 
irrigation scheduling can also be accomplished using 
dendrometers. Dendrometers measure the mean daily 
shrinkage (MDS). MDS refers to the difference between 
daily maximum and minimum trunk diameter. Soil water 
depletion or more demand from weather causes the trunk 
to shrink more each day. Research in almonds has shown 
dendrometers to be good indicator of plant water stress. 
An example of a commercially available dendrometer for 
precision irrigation is Phytech Ltd. (https://www.phytech.
com/). Other types of sensors that have been successfully 
used to monitor water stress include sap flow gauges that 
have been commercialized to support operational precision 
irrigation scheduling (e.g., TreetoScope). However, data 
from sap flow gauges can be variable, making it difficult to 
extract insights to inform precision irrigation scheduling. 

While SWP and dendrometers have been used successfully 
in precision irrigation management, they are more commonly 
used in high-value crop production. Monitoring canopy 
temperature remotely using thermal sensing has been a 
longstanding practice to characterize crop water stress 
by converting the data into a thermal stress index. Popular 
indices are the crop water stress index (CWSI) (Meyers et 
al. 2019; Drechsler et al. 2019), the DANS index (degrees 
above non-stressed plants) (DeJonge et al., 2015), and the 
TTT method (time-temperature threshold) (Wanjura et al., 
1995). Remotely sensed thermal data can be captured from 
satellite, aerial, or ground-based platforms; regardless of the 
platform, data must be geolocated. While the CWSI can be 
an effective tool for quantification of plant water stress level 
and can aid irrigation decisions, Irmak et al. (2000) showed 
that this method is primarily effective in determining 
irrigation timing and yield estimation rather than providing 
guidance or recommendations for irrigation amount. 
Thermal imagery from satellite sensors has been used to 
estimate regional crop water use (evapotranspiration). While 
satellite imagery may be too coarse for precision irrigation 
scheduling on individual farms, algorithms have been 
developed to downscale the information to the sub-field 
scale (Ha et al. 2013; Wang et al. 2017), and thermal imagers 
mounted on unmanned air vehicles provide imagery at a 
higher resolution (Lacerda et al. 2022). However, with all 
platforms, a software with functional algorithm(s) interface 
is needed to translate the acquired data into watering rates 
using a format compatible with the variable rate irrigation 
controller. While plant-based measurements typically signal 
crop water status sooner than soil water status, the use of 
plant-based sensors is not popular among producers.

Water management apps 

Significant progress has been made both by university 
research and extension programs, as well as the commercial 
irrigation industry in the U.S., to develop irrigation 
management apps that are either web- or smartphone-
based. With minimum inputs desired from the user, such 
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as location, planting/harvesting dates, crops, and irrigation 
system characteristics, these apps can simulate the soil 
water balance by retrieving public weather and soils data to 
provide real-time irrigation scheduling prescriptions. Some 
of these apps are aimed at eliminating the need for installing 
weather monitoring or soil moisture sensors at the site, 
although provisions to add such instrumentations into the 
app may exist. To enhance the predictive accuracy, however, 
some of the apps are specifically designed to process 
field-measured soil moisture data/information to provide 
more effective and representative recommendations 
(rather than relying on modeling) for a specific field 
condition (Irmak 2010; Bordovsky et al. 2017; Irmak 2023). 
The accuracies achieved in decision-making by relying on 
university-developed irrigation management apps have 
been evaluated against ground truth data in contrasting 
conditions (Andales et al. 2014; Bordovsky et al. 2017; Brad 
and Phil 2017; Cahn et al. 2015; Carlson 2019; Han 2016; 
Irmak et al. 2010; Kisekka and Kim 2018; Migliaccio et al. 
2015; Peters et al. 2013; Rogers 2012; Sanford and Panuska 
2015; Scherer and Morlock 2008; Stevens 2014; Vellidis et 
al. 2016; Wright 2018; Irmak 2023). These decision tools are 
welcomed by local producers as a free-of-cost irrigation 
management solution that can be used either singularly or to 
complement other solutions, such as soil and plant moisture 
sensors. Some commercially available irrigation apps can 
further streamline irrigation management by allowing 
the smartphone to communicate with multiple irrigation 
systems on the farm. This integration of devices has been 
saving substantial time and fuel that otherwise would have 
been spent by the producer for manual irrigation operations, 
justifying investment on irrigation app subscriptions. 

High spatial variability of rainfall is somewhat challenging to 
be measured by the limited to moderate spatial distribution 
of weather monitoring networks, hindering robustness 
of app simulations (Migliaccio et al. 2015). There is 
significant future promise for irrigation management apps 
to incorporate real-time crop feedback into simulations, as 
remotely sensed soil and crop status information becomes 
cheaper and more accessible. The short-term weather 
forecasts can also be effectively used in irrigation decision 
support apps. Additionally, advances in data analytics by 
employing machine learning algorithms may overcome the 
need for otherwise complex parameterization of soil water 
balance models. 

Decision support systems for variable rate 
irrigation Platforms for ET monitoring 

Evapotranspiration (ET) is the largest component of the 
soil water budget in any terrestrial ecosystem, including 
agricultural fields. Thus, accurate determination of crop 
ET becomes a necessary precursor to efficient irrigation 
management, especially when relying on soil water 
budget techniques. Crop ET can be indirectly or directly 
measured using sophisticated instrumentation, such as 
Eddy Covariance systems, Bowen Ratio Energy Balance 
Systems, lysimeters, scintillometry, sap flow gauges, stable 
isotopes, etc. The use of such techniques, however, is 

limited to research applications, being complex, costly, 
and requiring substantial time investment. Typically, crop 
ET is estimated using mathematical formulations that 
integrate the atmosphere’s demand for water (demand side) 
with soil and crop condition (supply side). For irrigation 
management applications, the two-step method reported 
in FAO-56 (Allen et al. 1998) and more recently outlined by 
Jensen and Allen (2016) is widely used by practitioners. This 
procedure is heavily employed in data-scarce environments 
by assuming crop growth and water uptake patterns. Since 
a lack of precise soil and crop monitoring is generally typical 
of commercial production environments, the two-step 
approach is one of the tools to tracking ET in irrigation 
scheduling and is frequently used in water management 
apps. ET determination using the two-step approach has 
been shown to improve significantly when site-specific data 
on soil and crop conditions are incorporated (Pereira et al. 
2020; Kimball et al. 2019; El-Naggar et al. 2020). For accurate 
crop ET determination, one of the central requirements is 
robust estimates of evaporative demand of the atmosphere, 
often represented by reference evapotranspiration (ETo). 
Within the Unites States, this need is effectively fulfilled 
by ET networks constituting geographically distributed 
automated agricultural weather stations. These stations 
are supposed to be properly sited over unstressed grass 
or alfalfa-reference surfaces, instrumented to measure air 
temperatures, solar radiation, relative humidity, and wind 
speeds, and rigorously maintained (ASABE engineering 
practice standard EP501.1 2015). Some major ET networks 
in the U.S. are California Irrigation Management Information 
System, the Arizona Meteorological Network, High Plains 
Regional Climate Center, New Mexico State University 
Climate Center, Colorado Agricultural Meteorological 
Network, North Dakota Agricultural Weather Network, 
Kansas Mesonet, Oklahoma Mesonet, and Missouri 
Agricultural Weather Station Network. Sub-field scale crop 
ET estimates are critical for precision irrigation management 
and much progress has been made in this direction by 
employing in-field mounted sensor systems (Andrade et 
al. 2020; Peters and Evett 2008; Payero and Irmak 2006), 
unoccupied aerial systems (Mokari et al. 2022; Nieto et al. 
2019; Chavez et al. 2020), and satellite platforms (Xue et 
al. 2020; Mateos et al. 2013; Bhatti et al. 2020; Melton et al. 
2012; Senay 2018). Proximal and remote-mounted sensors 
detect electromagnetic radiation reflected from soils and 
crops and estimate the degree of water stress for better 
informed ET estimation. Integrating Landsat images with 
different ET algorithms, field-specific crop ET information for 
the western U.S. has recently become available to the public 
via the OpenET (Melton et al. 2021) program, where users 
can retrieve current and recent historical ensembles of crop 
ET for their fields. 

Role of computer simulation and data 
assimilation 

According to the most recent Irrigation and Water 
Management Survey (USDA 2018), crop simulation 
models are the least used scientifically-based irrigation 
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scheduling tools among irrigators in the United States. 
The main obstacles to adopting crop simulation models 
for operational precision irrigation scheduling are the 
absence of evidence that these models provide a return 
on investment and the complexity associated with their 
implementation in real farm situations.  

Irrigation scheduling models based on simple IF-THEN rules 
(i.e., irrigate if situation X happens) that in some implicit 
fashion reflect our understanding of the system have been 
around for decades. The drawbacks of these types of 
models are that the rules tend to be very complex and are 
crop- and soil-dependent. In other words, this approach 
tends to provide a solution to a specific problem rather 
than a generic framework that can be applied to other 
crops/locations with minimal adjustments. Crop model-
based irrigation scheduling can overcome this limitation 
by providing a more generalizable framework. But crop 
model imperfections due to model structure or parameter 
uncertainty are commonly pointed out as the main obstacles 
to implementation of crop model-based optimization in 
precision irrigation. Real-time data assimilation of crop or 
soil measurements has been shown to improve models’ 
predictive power, and associated irrigation decisions. Linker 
and Kisekka (2022) showed that assimilating LAI alone 
significantly improved irrigation outcomes of a model-based 
irrigation optimization framework. To advance the use of 
crop simulation models in precision irrigation, future work 
should focus on combining model-based optimization and 
real-time data assimilation. 

Deficit irrigation

Globally, irrigated agriculture is experiencing competition 
from municipal, industrial, and environmental needs for 
water, and decline in freshwater supplies (Porkka et al. 
2016; Richter 2016). In water-limited areas such as the 
western U.S., water consumption for irrigation can exceed 
water supplies from surface and groundwater resources, 
and competing interests can increase water prices. Water 
markets allow farmers to transfer water to other higher value 
users during critical periods of water shortages (Richter 
2016; Szeptycki and Pilz 2017). To optimize overall farm 
economy, farmers can practice deficit irrigation, which is an 
effective tool to apply less water than what is required to 
fully meet crop needs, resulting in lower yields (or quality) 
but maximized net income. The principle behind deficit 
irrigation is to change the goal from maximum yields and 
gross income per area to acceptable yields that maximize 
water productivity and economic gain while operating within 
the water supply constraints posed by limited or expensive 
water. Drought tolerance of a crop can vary by phenological 
stage, and hence an important precursor to effectively 
implementing deficit irrigation strategy is precise knowledge 
of crop response to water limitations. This response is 
represented using a crop water production function, 
which establishes a relationship between marketable yield 
and total crop ET (Stewart et al. 1977; Hexem and Heady 
1978; Doorenbos and Kassam 1979; Taylor et al. 1983). Also 
important is conducting an economic assessment of the 

tradeoffs expected between yield and water costs (English 
1990; English and Raja 1996; Trout et al. 2020; Trout and 
Manning 2019). Global meta-analyses have confirmed across 
experimental conditions that higher water productivity can 
be achieved under deficit irrigation, including cotton (Cheng 
et al. 2021), wheat (Yu et al. 2020), maize (Allakonon et 
al. 2022), tree fruit (Tong et al. 2022; Adu et al. 2019), and 
vegetables (Singh et al. 2021; Adu et al. 2019). With fiercer 
pressure on water resources and more intense and longer 
droughts projected across global irrigated agroecosystems, 
deficit irrigation will enable producers to stabilize returns in 
an uncertain future. 

An Economic Approach to Optimize the 
Spatial Scale of Water Management Using 
Variable Rate Irrigation  

According to Walton et al. (2010), the adaptation or 
abandonment of a technology depends on whether it 
can create desirable and continued economic returns. 
Currently, the economic advantage of VRI technology is still 
uncertain with limited supporting evidence due to (1) the 
complexity of assessing the monetary value of various VRI 
water management and hardware options as compared with 
revenue from potential yield increase or water savings, and 
(2) the variation of crop, soil, environment, and technology. 
Understanding the relationships between soil, water, and 
crop yield is key and the most challenging task. 

Yield response to water availability, known as the water 
production function (or yield response function), has been 
studied for over fifty years for the purpose of improving 
water productivity. This response can be divided into 
two phases: deficit irrigation and surplus irrigation or 
waterlogging (Hanna 2006; Mannocchi and Mecarelli 
1994). Under water deficiency, crop yield increases with 
increased amounts of irrigation water until the maximum 
yield is achieved (Schneekloth et al. 2009; Brumbelow and 
Georgakakos 2007; Al-Jamal et al. 2000). The minimum 
amount of water that can achieve the maximum yield is 
referred to as the yield-maximizing irrigation amount. The 
proper timing of the irrigation through an effective irrigation 
scheduling plays a very important role in this process 
as well. Yield declines once irrigation water exceeds the 
yield-maximizing value. Intensive efforts have been made 
to obtain yield increase response under water deficiency 
(Al-Jamal et al. 2000). Yield increase following a quadratic 
function has been reported for corn, onion, cotton, maize, 
wheat, and forage crops (Kiani and Abbasi 2012; Quiroga 
et al. 2011; McCuistion et al. 2009; Garcia-Vila et al. 2009; 
Jalota et al. 2006; Cetin and Bilgel 2002; Howell et al. 
1995). Because soil type; elevation and its derivatives, such 
as slope; aspect; topographic wetness index (TWI); flow 
direction; flow length; and catchment area affect yield 
variability, these factors must be included when assessing 
whether a VRI system may improve economic returns.

Through field experiments, Sharma and Irmak (2020) 
conducted economic comparisons of VRI with fixed 
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(uniform) rate irrigation (FRI) and no irrigation (NI) in 
combination with three nitrogen application strategies 
of fixed (uniform) rate fertigation (FRF), variable rate 
fertigation (VRF), and pre-plant nitrogen (PP) management 
for maize (Zea mays L.). For the economic analyses, the 
average initial investment of the irrigation system and 
necessary VRI technology, salvage value of the system, 
total capital investment, total fixed cost, net present value 
(NPV), and internal rate of return (IRR) were quantified by 
considering numerous factors/variables, including interest 
rate, production input cost, longevity of the system, 
insurance cost, ownership cost, and salvage value. Soil types 
and irrigation management strategies (treatments) had 
significant impact on grain yield and thus on profitability, 
NPV, IRR, and irrigation system payback period. Net income 
from FRI management was significantly higher than VRI 
management in all soil types. The nitrogen treatments did 
not affect net income in any of the growing seasons. The 
FRI management strategy had a positive NPV in all soil 
types, whereas VRI management in soil types S2 (Hastings 
silty clay loam) and S3 (Hastings silt loam) had negative 
NPVs. The negative NPV indicates that the present value 
of the costs exceeds the present value of future profits 
at the assumed discount rate (5%). Sharma and Irmak 
(2021a) quantified and compared the soil-water dynamics, 
including available water (AW), and ETc during vegetative 
and reproductive growth periods of VRI, FRI, and NI under 
FRF, VRF, and PP nitrogen management in three different 
soil types. Sharma and Irmak (2021b) quantified and 
compared maize growth and development [leaf area index 
(LAI) and plant height], grain yield, crop evapotranspiration 
(ETc), irrigation-yield production functions (IYPF), 
evapotranspiration-yield production functions (ETYPF), 
and crop water productivity (CWP) under VRI, FRI, and NI 
at fixed rate fertigation (FRF), VRF, and pre-plant nitrogen 
(PP) management in the same environment and under 
the same agronomic management practices. The VRF 
treatment used 20% less fertilizer as compared with PP and 
FRF treatment without significantly (P > 0.05) reducing 
the grain yield. In the higher elevation soil S1, the grain 
yield was not significantly different (P > 0.05) between 
FRI and VRI treatments. However, in S2 and S3, which 
have lower elevation, yield in FRI was 43% and 55% greater 
than the yield in VRI, respectively. On average, under VRI 
management total irrigation amount was 24% lower than 
FRI in S1, with only 4% reduction in yield as compared with 
FRI. Soil type impacted the response of maize grain yield 
to ETc and the responses also varied between FRI and 
VRI. They concluded that, in most cases, FRI had superior 
performance in terms of maintaining optimum crop yield 
and reducing yield variations than VRI. VRI management 
based on soil water status has the potential to maintain 
maize grain yield and improve CWP as compared with FRI 
in certain conditions or soil types, such as in S1 Crete silt 
loam. However, further research is needed to validate/
justify its adoption for the fields with significant spatial soil 
heterogeneity (both in horizontal and vertical domains) and 
to understand the economics of VRI-VRF systems.

Economic assessment of irrigation 
management 

The decision to adopt new technology is very crucial to 
the economics of the farming business. To determine if 
optimizing water usage by intensifying irrigation control 
(i.e., adding more control zones over a pivot arm) with 
a  VRI system was a financially justified decision, a partial 
budgeting analysis of irrigation management was conducted 
and demonstrated. Partial budgeting evaluates the financial 
effects of the business resources that will be changed 
(Dalsted and Gutierrez, 1990). In the case of irrigation 
management, the resource that needs to be optimized is the 
amount of irrigation water. Note that this water optimization 
was achieved by allocating irrigation water to smaller field 
segments to minimize water wastage.

Under the partial budgeting concept, the economic 
assessment of irrigation management was conducted 
by evaluating the net return, financial loss, and capital 
investment in water optimization across different levels of 
irrigation control.

Net return of irrigation management

The net return from irrigation management was calculated as 
the difference between the additional income and the cost 
of altering the amount of applied water. Under this concept, 
the net return of water optimization was expressed as:

in which r
Q
 was the net return of a given field segment 

delineated under a specific uniform level of irrigation control 
($•yr−1), Q was the total irrigation amount applied to this 
segment (mm•yr−1), n was the number of elementary field 
areas (interpolation pixels) within this segment, Y

i
 was the 

yield of ith elementary field area (t•ha−1•yr−1) within this 
segment responding to Q, a

i
 was the size of ith elementary 

field area (ha), p
Y
 was the price of grain yield ($•t−1), c

W
 was 

the cost of irrigation water ($•mm−1•ha−1), and cE was the 
cost of energy for pumping water ($•mm−1•ha−1).

Using the equation above, the optimum net return rQopt
 was 

obtained when the optimum irrigation amount Q
opt

 was 
applied. In this case study, the amount of Q

opt
 for a particular 

segment was determined by testing different values of Q 
with an increment of ΔQ until the maximum net return was 
achieved. After selecting the optimum irrigation amount for 
each field segment, the optimum net return of a given field 
under a specific level of irrigation control was expressed as:

in which R
opt

 was the optimum net return for a field under 
a specific level of irrigation control ($•yr

−1
), rQoptj

 was the 
optimum net return of jth segment within this field ($•yr−1), 
and m was the number of irrigation segments.
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Economic loss of irrigation management

Maximizing the net return of water optimization by 
subdividing a field into an infinite number of small segments 
is not practical due to the complexity and potential 
uncertainty involved in such management. Naturally, 
enlarging segment areas with low irrigation control results in 
greater deviation from the maximum (theoretical) attainable 
net return due to sub-optimal water usage. Such economic 
deviation was quantified using:

in which L was the economic loss of a specific level of 
irrigation control ($•ha−1•yr−1), Roptmax

 was the maximum 
attainable net return for a given field when considering 
segment areas were as small as the elementary field areas 
(interpolation pixels) ($•yr−1), and A was the total area of the 
field (ha).

Capital investment in irrigation management

To achieve water optimization through different levels 
of irrigation control, costs of control systems need to be 
evaluated. Such expenditures were quantified using:

in which C was the capital investment of a specific level of 
irrigation control ($•ha−1•yr−1), C

CPIS
 was the cost of a center 

pivot irrigation system ($), C
iSC

 was the cost of initiating 
angular adjustment of water application (zone control) ($), 
C

iZC
 was the cost of initiating zonal adjustment of water 

application ($), n
ZC

 was the number of control zones, c
ZC

 was 
the cost of each additional control zone ($•zone−1), dy was 
the prorate coefficient to annualize capital investment over 
given number of years (20) at a specific interest and cost 
depreciation rates.

The sum of L and C constitutes the economic disadvantage 
of irrigation management to the end producer. Thus, the 
goal of decision-making is to identify the level of irrigation 
control that minimizes the sum of L and C among all 
alternatives.

Sensitivity and profitability analysis

To evaluate the economic opportunity of irrigation 
management under different fields and financial conditions, a 
sensitivity analysis was also performed. The relative net return 
was calculated as a deviation of net return when varying 
nominal input values one-at-a-time to a maximum of ±40%.

Moreover, the relative profitability was calculated to 
evaluate the conditions under which adopting irrigation 
management was economically viable. The profitability 
was the difference between the net return and the capital 
investment. By subtracting the profitability of the non-
irrigation management, the relative profitability of a specific 
level of irrigation control was determined.

Levels of irrigation control

A total of 62 scenarios, grouped into no irrigation (NI), 
uniform management (UM), speed control (SC), and zone 
control (ZC) were proposed in this case study to represent 
different levels of irrigation control. Two SC scenarios 
represented a pivot rotating at 2° and 10° fixed rate 
angular increments. Fifty-eight ZC combined these two 
angular increments, with a pivot arm subdivided into up to 
30 sprinkler banks (or control zones) to deliver different 
irrigation rates simultaneously. Although the length of each 
independently controlled bank is typically defined by field 
anomalies and general field patterns, in this case study, it 
was assumed that the field segments that could receive 
different water rates were similar in size across the entire 
field. This means the lengths of the sprinkler bank towards 
the center of the pivot are longer than those towards the 
edge of the field. With 62 scenarios, the number of individual 
irrigation rates (or field segments) within a field could 
range from 1 (e.g., UI) to 5,400 (e.g., 2°-30 ZC: 2° angular 
increments with 30 sprinkler banks). Figure 4 illustrates three 
irrigation scenarios for a center pivot system with a lateral 
length of 289 m. The innermost circular area (0.24 ha with 
a 27.6 m radius) was excluded from evaluation, as generally 
this area is either not irrigated or under-irrigated..

Demonstration of the application

To highlight the tool’s strength in the accounting field and 
to address heterogeneity in decision-making regarding 
irrigation strategy, a detailed field characterization of 
water status was necessary to present the impact of water 
optimization on profits. For that, an example data fieldand a 
list of assumptions (Huang et al., 2015) were used.

Figure 4. Illustrations of three irrigation management scenarios: UM (left), 4° SC 
(middle), 4°-15 ZC (right).

Example data field and field characterization

A circular agricultural field at the Alberta Irrigation 
Technology Center (AITC) in Lethbridge, southern 
Alberta, Canada (Figure 5) was selected as an example to 
demonstrate the model's performance. The field was under 
semi-arid climate conditions, and hard red spring wheat was 
grown. A five-tower center-pivot VRI system with a span 
length of 289 m and 129 sprinklers, manufactured by Valley® 
Irrigation, has been installed to provide irrigation water. This 
system allowed the water rate of each sprinkler to be altered 
down to every 2° rotation increment. The total area under this 
pivot system was approximately 27 ha;. The north-eastern 
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quarter of the field) was not under observation to avoid 
interrupting farming operations. The innermost circular area 
(approximately 27.6 m in radius) was excluded, leaving a total 
area under evaluation of approximately 20 ha. Full details of 
the field experiment are available in Yari et al. (2017).

Figure 5. A field case study located at the Alberta Irrigation Technology Center 
(AITC) in Lethbridge, Alberta, Canada, was used as an example in this case study.

A detailed field characterization of the potential water 
stress status was conducted using ECa and a topographic 
survey. The Veris® 3100 EC Surveyor (1 Hz reading and 
approximately 10 m intervals between passes) was used 
to obtain ECa measurements. An RTK GPS receiver (1 Hz 
sampling rate and approximately 5 m spacing between 
passes) was used to collect topographic measurements. 
ECa measurements ranged from 17 to 175 mS•m−1. Field 
elevation ranged from 903 to 907 m. Although ECa served 
as a proxy for water stress potential (WSP) and elevation 
was used to simulate landscape-induced water-logging 
susceptibility, these two variables could be replaced with 
other data sources that provide high-resolution water-status 
information.

To represent field characteristics of elementary field areas, 
geospatial processing was performed on the dense sensing 
measurements (e.g., ECa and elevation). An ordinary kriging 
interpolation method was used to create interpolated 
ECa and topographic maps. The topographic map was 
converted to a topography wetness index (TWI) surface 
using the open-source GIS software SAGA (Böhner and 
Conrad, 2009). This software provides comprehensive 
algorithms for processing various elements (such as 
multidirectional convergence flow, catchment area, etc.) 
required to estimate potential soil moisture variability 
induced by landscape position (Silva et al., 2014), which 
facilitated part of the data analysis in this case study. TWI 
was a unit-less value; the larger values represent a relatively 
higher tendency for water accumulation (e.g., lowland), 
and the smaller values represent a relative relatively lower 
tendency (e.g., highland): 

In which As was the ratio of catchment area over cell width 
in slope direction, and β was the slope in the steepest 
downslope direction of the terrain (°).

The ECa and TWI surface maps were synthesized and 
converted into a vector-based map (i.e., square polygons) 
consisting of multiple 3-by-3 m grids to represent the 
confined elementary field areas. Each area was subjected 
to a pair of ECa and TWI values;. 3-m spatial resolution 
was chosen because it was the smallest distance between 
two sensor measurements. This map was used to create 
irrigation segments according to 62 management scenarios 
using the software ArcGISTM developed by ESRI (2014). 
Figure 6 illustrates an irrigation segment from scenario 
10°-5 ZC with a color scheme over elementary field areas 
showing the variability of ECa. Each confined elementary 
field area contained attributes of polygon ID, segment ID, 
management ID, ECa, and TWI. This information was stored 
as tabular data to estimate yield response and irrigation 
management profits using the R programming language (R 
Development Core Team, 2016).

Nominal values for assumed conditions

Table 1 lists the nominal values and variables used to 
demonstrate the outcomes of the economic assessment. It 
should be noted that under no circumstances should these 
values be considered as the most certain estimates. These 
values were used to represent a specific case of field ECa 
and elevation, and, to specify model boundary conditions 
for yield response to irrigation, the cost of water and energy, 
the price of grain yield, and the cost of the irrigation system. 
Note that, the values of C

CPIS
, C

iSC
, C

iZC
, and c

ZC
 were based 

on the model of the mentioned VRI system from Valley® 
Irrigation in 2013. Thus, the actual number may change. 
Nevertheless, the economic assessment tool is highly 
flexible and can be easily performed with any alternative set 
of input values.

Figure 6. Example of an irrigation partition from one of the 62 management 
scenarios with a color scheme showing ECa. 
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Table 1. The input values of model variables used in the economic assessment.

Testing of input values 

During 2013 and 2014, eighteen plots (approximately 180 
m2 each) were created to study yield response to irrigation 
treatments (Table 2). At these plots, water was applied at 
various depths (mm), grain yields of hard red spring wheat 
(t•ha−1) were measured, and soil samples were collected. 
According to this table, soil ECa was relatively higher at plots 
one to eight. Total irrigation amounts for the two experimental 
years were very similar. No yield was observed in plots one to 
five  in both years due to flooding and heavy rainfall; however, 
in the remaining plots, the yield in 2014 was higher. 

Figure 7 illustrates the relatively higher ECa measurements 
across plots one to eight, which coincided with the 
conditions of excessive water accumulation due to flooding. 
As shown, each experimental plot overlaps approximately 
twenty elementary field areas (i.e., 3 m by 3 m), which 
20 elementary field areas (i.e., 3 m by 3 m), implying 20 
different yield response functions.

Figure 7.  Illustration of eighteen study plots and two simulated yield response 
functions. 

To evaluate whether the given assumptions could yield 
comparable results, a yield simulation was conducted 
for the 18 study plots. Under various experimental water 
application depths (Table 2), eighteen simulated yields were 
calculated using the given field assumptions and spatially 
dynamic yield response functions.. Figure 8 illustrates the 
correlation between experimental and simulated yields for 
the two study years, with R2 values above 0.7, indicating 
that the input conditions yielded similar responses to 
irrigation. The model successfully distinguished zero-yield 
plots (i.e., one to six) where soil ECa values were relatively 
higher. The observed experimental yield at plots seven and 
eight, however, was inconsistent with the simulated results. 
Nevertheless, this result shows that the selected input 
values for this example field were effective.

Table 4 summarizes the results of the economic assessment 
under 62 irrigation scenarios. Net returns, financial losses, 
capital investments, and economic disadvantages of 
irrigation management were calculated. The net return 
was estimated to be 1,348 ($•yr−1) when each irrigation 
segment was measured at 3 m by 3 m. According to the 

Figure 8. Correlation between simulated and experimental yields for 18 study plots.

Model 
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Value Model 
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$5,000

Y
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Y
waterloglHigh
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0 t • ha−1 c
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$2,000

c
E

$0.4 mm−1 • ha−1 c
W

$0.5 mm−1• ha−1 Years 20

p
Y

$180 t−1 ΔQ 10 mm d
y

6.17%

Plot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

ECa (0-30cm) [dS • m−1] 3.5 3.7 3.4 4.3 3.8 5.8 5.2 3.1 1.1 0.7 0.6 0.8 0.7 0.7 1.1 0.7 1.3 3.1

Irrigation 2013 [mm • yr−1] 76 76 102 127 102 76 127 102 127 102 102 76 127 127 76 102 127 76

Irrigation 2014 [mm • yr−1] 61 61 107 152 107 61 152 107 152 107 107 61 152 152 61 107 152 61

Yield 2013 [t • ha−1] 0.0 0.0 0.0 0.0 0.0 0.7 2.4 2.4 2.4 2.5 3.0 2.7 2.9 3.1 2.7 2.5 2.8 2.6

Yield 2014 [t • ha−1] 0.0 0.0 0.0 0.0 0.0 0.9 2.4 4.2 4.1 4.2 4.4 4.3 4.3 4.3 4.5 4.1 4.0 3.9

Table 3. ECa, irrigation treatments, and grain yield of eighteen study plots.
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results, the net return increased with increasing 
levels of irrigation control (water optimization), with 
the highest and lowest values being under 2°-30 
ZC and NI, respectively. In other words, intensifying 
irrigation management from no to advanced control 
reduced economic losses from 917 to 39 ($•ha−1•yr−1). 
Comparing economic losses between the two angular 
increment sizes under ZC management, it was 
found that using 2° angular increments could reduce 
financial losses by 12%. Although 2°-30 ZC showed 
the lowest economic loss, the optimal management 
level was 2°-10 ZC after accounting for the required 
capital investment.

Figure 9 illustrates the economic loss, capital 
investment, and economic disadvantage (i.e., the 
sum of economic loss and capital investment) as a 
function of irrigation control level. The economic loss 
decreased sharply from NI to UM when irrigation 
practice was introduced, and then continued to 
decline with increasing levels of VRI control. The 
magnitude of decrease in the economic loss was 
greater under 2° angular control than that of 10°. This 
result was anticipated, as irrigation management 
under 2° angular control better matched local needs 
than under 10°, because the irrigation segment area 
defined under the former control was 80% smaller 
than that determined under the latter.

The economic disadvantage declined with the 
introduction of  VRI. However, after the optimal 
VRI 10-control-zones  were reached, the economic 
disadvantage increased due to higher capital 
investment. This observation was only valid for the 
cost model of the mentioned VRI technology. As 
marketing strategies for parts pricing and technical 
support often vary among manufacturers, the overall 
economic outcomes are expected to change when 
considering VRI systems other than the one used 
in the case study. Generally, irrigation management 
involving a greater number of VRI control zones 
becomes economically optimal when the economic 
disadvantage (primarily due to capital investment) 
associated with each added control zoneremains 
relatively low. 

As illustrated in Figure 10, net return was highly 
sensitive to the maximum yield, the model boundary 
condition ECa (which defined the field's wet and dry 
conditions), the yield-maximizing irrigation amounts 
under dry conditions, and the price of yield. The 
graph showed that when soil water storage potential 
(represented using ECa

wWet)
 or precipitation was 

relatively higher, the incremental increase of net 
return was higher under UM scenario. Regardless of 
management options, implementing irrigation to crops 
with high yield, low water demand, and high market 
price was a profitable strategy. Within the given range 
of nominal values, the cost of energy and water did not 
influence the net return as much as other  variables. Unit: $ • ha−1yr−1

Table 4. Economic assessment of 62 irrigation management scenarios.

Scenarios Zone Revenues Cost of Error Cost of 
technology

Total Cost

2° 10° 2° 10° 2° 10°

UM n/a 1,006 381 309 689

SC n/a 1,041 1,041 346 346 324 670 670

ZC 2 1,151 1,126 236 260 336 572 597

- 3 1,193 1,165 194 221 343 536 564

- 4 1,218 1,186 168 200 349 517 549

- 5 1,249 1,209 138 178 355 493 533

- 6 1,266 1,220 120 166 361 481 527

- 7 1,276 1,232 110 155 367 478 522

- 8 1,287 1,238 100 148 373 473 522

- 9 1,295 1,246 91 141 380 471 520

- 10 1,306 1,254 81 133 386 466 519

- 11 1,308 1,257 78 130 392 470 521

- 12 1,312 1,258 75 128 398 473 526

- 13 1,319 1,265 68 122 404 472 526

- 14 1,323 1,266 63 120 410 474 531

- 15 1,325 1,270 61 117 417 478 533

- 16 1,328 1,272 59 115 423 482 537

- 17 1,329 1,272 58 114 429 487 543

- 18 1,333 1,275 54 112 435 489 547

- 19 1,337 1,279 50 107 441 491 549

- 20 1,339 1,279 48 107 447 495 555

- 21 1,340 1,281 47 106 454 501 559

- 22 1,341 1,283 45 103 460 505 563

- 23 1,341 1,283 46 104 466 512 570

- 24 1,342 1,282 45 104 472 517 576

- 25 1,343 1,283 44 104 478 522 582

- 26 1,344 1,283 43 103 484 528 588

- 27 1,345 1,285 42 102 491 532 592

- 28 1,347 1,285 40 101 497 537 598

- 29 1,347 1,286 39 100 503 542 603

- 30 1,348 1,287 39 99 509 548 609
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As indicated in Figure 11, implementing irrigation 
management was profitable when the yield price was 
greater than 108 $•t−1 and/or the maximum yield was higher 
than 5 t•ha−1. s market price and yield of the selected crop 
increased, the profitability of VRI Zone control reached up 
to $ 200•ha−1•yr−1 higher than that for uniform management. 
However, when the minimum attainable yield under dry 
conditions exceeded 4 t•ha−1, applying additional water to 
the crop was not an economically viable strategy regardless 
of management options.

As for the effect of soil water storage conditions 
(represented using by ECa) on profitability, it was shown 
that uniform management resulted in no profitability 
when ECa at the wettest locations was below 50 mS•m−1. 
Besides, the four management options would result in an 
additional $ 200•ha−1  in profitability annually, with ECa 
measurements at the driest locations increasing by up to 
40%. Moreover, adopting irrigation management for a crop 
whose yield-maximizing water requirement in dry locations 
was as high as 520 mm annually (including rainfall) remained 
economically viable. 

Finally, the profitability of irrigation investment fluctuated 
widely across management options, with spatial variability 
in field characteristics, soil-crop-water relationships, crop 
prices, and water and energy costs. The results showed that 
increasing the level of irrigation control using an advanced 
VRI system appeared to be an excellent approach to improve 
water productivity by spatially adjusting application amounts 
according to local needs, regardless of environmental 
and financial factors. However, in terms of optimizing 
irrigation profitability, the economic assessment revealed 
that quantifying the value of irrigation management was 
an essential component in the economicdecision-making. 
Using proximal soil sensing technology to obtain dense 
geospatial data at low cost proved an efficient method for 

characterizing  field heterogeneity. Although 
ECa and topographical data as proxies for 
soil properties associated with irrigation 
management, incorporating additional or 
alternative field measurements could help 
compare different outcomes. The theoretical 
formulation of the crop-water-soil relationship 
was found to be highly effective, providing 
a universal formula that can be customized 
site-specifically based on field measurements. 
Using the default field data resolution (3 by 3 
m) to generate numerous spatially dynamic 
water response functions for the economic 
assessment of the 20-ha example field was 
not computationally intensive. But a similar 
evaluation has not been tested for larger fields.

Nevertheless, this generic algorithm for the 
water response function was spatially dynamic, 
unlike the general empirical approach. The 
incorporated algorithms can be further fine-
tuned using crop models , such as AquaCrop, to 
improve characterization of a given target field. 
Such a test was not yet complete in this study. 

Moreover, the results suggested that crop commodity prices 
had a much greater impact on irrigation profitability than the 
commodity prices of water and energy. This finding might 
be underestimated, as the tested range for the commodity 
value of natural resources might be smaller than the actual 
market fluctuations. Because global political dynamics and 
climate highly influence commodity prices, they should be 
closely monitored to reduce long-term financial risks.

Based on these results, it is concluded thatrealizing the 
full potential of VRI technology requires an economic 
assessment before implementation. The proposed economic 
assessment tool effectively incorporated agronomic 
and economic factors while adopting VRI technology to 
optimize crop irrigation profitability and water management. 
The model is flexible, and its architecture accommodates 
a range of environmental and economic input parameters. 
The comparison of 62 irrigation scenarios using the 20-ha 
example field showed the greater benefit of raising VRI 
control to the point where the pivot was subdivided into 
10 independently operated irrigation control zones. Further 
intensification of VRI indicated economic disadvantages, 
with relatively high capital investment compared with the 
acquired yield and cost benefits. Yet, this result was valid 
only under the specific assumptions and input setting.

The advantage of this assessment tool for irrigation 
management is its generic approach, which can be 
automatically adjusted by the tool based on field conditions. 
Further development of this tool includes the evaluation of 
applicability under a broader range of field characteristics, 
the incorporation of various crop-water-soil relationships, 
and the consideration of potential monetary risks. With a 
robust economic assessment tool, irrigation managers can 
identify investment options, estimate profitability, anticipate 
potential financial risks, and achieve operational stability.

Figure 9. Costs associated with different levels of irrigation control: NI (no irrigation), UM (uniform 
management), SC (VRI speed control), and ZC (VRI zone control)
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Complementary Technologies and Themes to 
Precision (Smart) Irrigation  

Digital agricultural solutions and smart farming systems 
are under development in several countries. A smart 
farming system could include various precision agricultural 
technologies, including precision irrigation. The smart 
farming concept describes a system where smart sensing 
and monitoring systems function with information 
communication technologies to increase the economic 
yield of crop and/or livestock production and optimize farm 
inputs, processes, and profits (Wolfert et al. 2017). The 
concept extends to the transportation, distribution, and 
retail phases of the food supply chain (Nukala et al. 2016; 

Idoje et al. 2021). 

Within the smart farming framework, existing 
complementary technologies that could facilitate the 
integration of control and decision-making for precision 
irrigation systems in open fields and in controlled 
environments require fast, reliable internet connections. 
This is necessary to link farming processes for optimal 
water management, reliable sensor network systems that 
provide feedback on plant water and nutrient status, cloud 
computing systems that enable the collection and access 
of real-time data and information, big data analytics for 
decision support, and predictive analytics for weather and 
markets (Maraveas et al. 2022). The internet of things for 

Figure 10. Sensitivity of field revenue to different values of variable input. Figure 11. Economic benefits of selected irrigation management scenarios over no 
irrigation under different field and financial conditions.
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precision agriculture (IoT4Ag) (Kagan et al. 2022) could 
enable the monitoring of plant, soil, water, and weather data 
and inform data-driven models, and big data analytics that 
will employ artificial intelligence (AI) to monitor and predict 
water stress (King and Shellie 2016), water quality (Chen et 
al. 2020), and control irrigation scheduling (Romero et al. 
2012). Big data analytics are a major component in many 
ongoing agricultural projects, including the classification 
of land cover changes, forecasting rainfall, snow melt and 
severe weather events, and estimating evapotranspiration 
with limited instrumentation (Kamilaris et al. 2017).

An example of a precision irrigation technology that 
integrates different types of sensing systems and data 
analytics for irrigation management decision support is 
the Irrigation Scheduling Supervisory Control and Data 
Acquisition System (ISSCADAS) (Evett et al. 2020) 
(Figure 12). The ISSCADAS uses weather data and canopy 
temperature data collected throughout a field using a 
network of wireless canopy temperature sensors mounted 
on a center pivot irrigation system to generate precision 
irrigation prescription maps based on the estimation of 
plant water stress (O’Shaughnessy et al. 2010). A network 
of soil water sensors connected to the internet of things 
(IoT) (Thompson et al. 2021) can be used in combination 
with canopy temperature sensors to generate precision 
irrigation prescription maps based on the estimation of 
plant stress and soil water status. The combined use of 
canopy temperature and soil water sensors can also improve 
precision irrigation management using the ISSCADAS in 
humid (Stone et al. 2019) and semi-arid (O’Shaughnessy 
et al. 2020) environments. AI algorithms can be used to 
estimate canopy temperatures in situations where canopy 
temperatures cannot be measured because the center 
pivot cannot move due to a malfunction or cannot traverse 
the field within a reasonable amount of time. The canopy 
temperatures estimated by AI algorithms can be used to 
generate precision irrigation prescription maps based on 
plant stress to add redundancy to the ISSCADAS (Andrade 
et al. 2022).

While smart farming could lead to more sustainable 
agricultural production, there 
are barriers to its progress and 
adoption. These include limited 
accessible and reliable internet 
connectivity in rural areas (Mark 
et al. 2016; O’Grady et al. 2019; 
Strover et al. 2021); upfront 
costs for sensor systems, up-
to-date infrastructure for data 
transmission, and hardware 
for automated control; lack of 
expertise to analyze data; data 
governance; and incompatibilities 
within the collection of integrated 
technologies (Wolfert et al. 2017; El 
Bilali and Allahyari 2018; Drewery et 
al. 2019).

Future Needs  

Precision irrigation, when properly designed and 
implemented, can offer significant benefits for producing 
agricultural commodities with reduced inputs and enables 
utilizing resources efficiently, which can contribute to the 
sustainability of agricultural productivity. This management 
strategy can be effective in production fields that have 
considerable spatial variability in terms of soil types, soil 
properties, slope, and other soil and terrain characteristics. It 
can provide significant advantages over traditional irrigation 
management strategies, especially in water-limiting regions. 
Thus, precision irrigation technology can be one of the 
effective tools for using natural resources efficiently to 
produce sufficient food and fiber for a rapidly growing world 
population, especially in light of climate change, which 
negatively impacts agricultural production globally. While 
precision irrigation technology has been established and 
demonstrated to be beneficial for agricultural production, 
this technology is primarily utilized in research and 
demonstration platforms. Its adoption in large- or small-
scale agricultural production fields is necessary to achieve 
or realize the aforementioned contributions in terms of food 
and fiber production with limited input by accounting for 
spatial attributes of production fields. Specifically, to realize 
the maximum benefits of precision irrigation technology, the 
following current and future needs have been suggested:

(i) Precision irrigation technologies are adaptable to 
sprinkler, gravity (surface), and microirrigation (including 
surface and subsurface drip) methods and can provide 
considerable increase in crop water productivity. While 
the focus of precision irrigation has been on sprinkler and 
microirrigation methods, there are effective and practical 
tools that could enable implementation of precision 
irrigation in gravity (surface, including furrow, irrigation) 
systems, which needs further research and demonstration 
as surface irrigation is by far the most dominant irrigation 
method globally.  

(ii) While precision irrigation has shown in research and 
demonstration fields that it is a viable technology that 

Figure 12. Schematic of a (1) self-propelled sprinkler irrigation system and a network of sensing systems supporting 
its irrigation management. The irrigation system is operated by a (2) control panel. Recommended precision irrigation 
prescription maps are generated automatically by an Irrigation Scheduling Supervisory Control and Data Acquisition 
System (ISSCADAS). The ISSCADAS runs continuously on (3) an embedded computer mounted next to the control 
panel and automatically collects and processes data obtained from a (4) weather station, a (5) network of soil water 
sensors reporting data to a (6) node- (7) gateway system connected to the internet of things (IoT), and a (8) wireless 
network of canopy temperature sensors distributed along the irrigation system’s frame.
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can contribute to the sustainable utilization of natural 
resources for production, well-coordinated efforts to better 
understand the impediments for adoption in growers’ 
fields and enable the successful implementation of this 
technology in large scale production fields are necessary. 
Accomplishing these goals requires the participation and 
partnership of academicians, researchers, private industry, 
state and federal water management agencies, irrigation 
practitioners, growers and their advisors, and other 
agricultural professionals.  

(iii) Because crop physiology, development, and response 
to different spatial variability can change with soil type, 
climate, management practices, and numerous other 
factors, the research, demonstration, and analyses of 
viability, as well as the effectiveness of precision irrigation 
technology in different soil types, climatic conditions, and 
under different types and magnitude of spatial variabilities, 
must continue. 

(iv) The management zone delineation and associated 
algorithms (based on electrical conductivity, and other soil 
characteristics variables/indices) and their implementation 
in data acquisition systems in terms of irrigation timing 
and amount decision-making need further investigation to 
enhance the suitability of methods for different cropping 
systems, soil, and terrain characteristics.

(v) The use of soil moisture-sensing technologies, 
evapotranspiration-based irrigation scheduling, and plant 
characteristics-based irrigation scheduling, as well as how 
these technologies can be used with precision irrigation 
methods to further enhance crop productivity, needs further 
research, demonstration, and dissemination.  

(vi)	 Potential design, operational, and management-
related drawbacks, and potential challenges in terms of 
implementing precision irrigation technologies under 
different climatic, soil ,,and management conditions need 
to be openly communicated/disseminated so that these 
challenges can be addressed to enhance the effectiveness 
of precision irrigation. 

(vii)	Crop water and nitrogen productivity responses to 
precision irrigation (including variable rate irrigation) under 
different production and management settings need to 
be documented for local conditions, as these relationships 
may not be transferable between the locations or regions 
that have different crop production environments and 
management. 

(viii) The benefits and positive impacts and implications of 
large-scale adoption, as well as economic and environmental 
benefits of precision irrigation technologies, need to 
be better documented and effectively communicated 
to stakeholders, decision- and policymakers, and all 
partners and professionals involved in small- or large-scale 
irrigated agricultural production, planning, management, 
and forecasting. This need is becoming more critical as 
the negative impacts of climate change, limitations in 
water resources availability, water quality degradation 
for agricultural irrigation, competition for water between 

different sectors, and other factors impose (and will 
continue to impose) stress on irrigation agriculture to 
meet the food and fiber demand of a rapidly growing world 
population. Technology development, and perhaps more 
importantly, implementation of technologies in production 
fields, will definitely aid in mitigating the negative impacts 
of climate change and other external factors/challenges on 
irrigated crop production and enable the sustainability of 
irrigated agricultural production. 
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