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Introduction

Water is a crucial input for global food productivity in all
aspects of agricultural production, from crop cultivation

to livestock management to other aspects of the value
chain (FAO, 2023). Irrigation remains vitally important in

the United States and worldwide as a means to enhance
agricultural productivity. Irrigation provides stability for
agricultural productivity, enhances yield quantity and
quality, and plays a vital role in sustaining production (Irmak
2023). Considering the negative impacts of climate change
on agricultural production and management practices,
especially in terms of increases in air temperature, vapor
pressure deficit, and increased variability in precipitation
timing, amount, and intensity, irrigation scheduling can be
considered one of the most effective management tools

to mitigate climate change impacts on the production

of agricultural commodities, especially with respect to
managing drought stress. Because drought and/or limited
water resources are major limiting factors for food and fiber
production worldwide, especially in dry regions, a substantial
portion of the increase in crop production and crop water
productivity (i.e., crop yield or biomass production per unit
of irrigation or evapotranspiration) to meet the world's

food and fiber demands will most likely stem from irrigated
agriculture (Irmak 2015a, b). With the projected need of 60%

more food production to achieve food security by 2050, the
challenge is how to achieve this goal with the same or even
reduced water resources without sacrificing water’s other
ecological services and functions. The challenge is elevated
even further when other stressors to this resource, such as
climate change, pollution, poor management and policy,

and landscape alterations, are taken into consideration.
Agriculture, which currently accounts for 70% of all water
withdrawals globally, will be affected by these challenges,
yet paradoxically, it holds the key(s) to the solution for

food security and water scarcity in a rapidly changing

world. Improving and expanding irrigated agriculture can
directly increase food production (as compared with
rainfed), mitigate yield decline during drought, improve

the economic viability of existing cropland, and potentially
reduce water usage in relatively inefficient systems. There

is a concerted effort across the globe to perceive irrigation
water use as part of the solution rather than a contributor to
the environmental problem (ICID 2022). Thus, meeting the
food and fiber demands of an increasing world population
requires producing more commodities with equal or lesser
resources, which requires enhancing crop water and nutrient
productivity. These enhancements can aid in reducing
within-field water losses and increasing crop production
efficiency by applying the proper amount of water at the
right time and at the right place in the production field
utilizing precision irrigation technologies.

This paper discusses the role of irrigation technologies and
complementary precision crop management in addressing
these challenges in water resources and food production.
First, the paper defines what precision irrigation entails,
how it can improve performance efficiency, and the
technologies that apply this concept to different irrigation
systems. This includes gravity irrigation systems, which are
considered the least efficient among all systems, yet are still
used extensively in the western U.S. (Figure 1) and are the
dominant irrigation method globally. Regardless of irrigation
type, decision support systems and fertigation can improve
the performance of irrigated production, which is discussed
in the second chapter. This area is increasingly utilizing new
technologies, such as soil water content sensors, mobile
applications for water management, computer simulations,
and evapotranspiration (ET) monitoring. This chapter is
followed by discussions of the benefits these precision
irrigation tools can provide. Chapter four discusses the state
of adoption of precision irrigation technologies. Despite

the promising opportunities and benefits, adoption is not
yet at the optimum level in which irrigated agriculture

can benefit from its maximum potential. Challenges and
barriers to adoption will be discussed from different angles
(sensors and sensing platforms) and sectors (integration
and extension). Chapter five discusses other complementary
technologies and themes related to precision irrigation,
with the goal of bolstering the adoption rate and impact

of these technologies to irrigated agriculture. The last
chapter summarizes the benefits and risks (economic,
environmental, and agronomic) of precision irrigation as well
as future needs in research and extension/education.
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General Overview of Precision Irrigation

Irrigated agriculture is critical to meet the increasing
demand for agricultural products. On a global scale, water
used in agriculture represents roughly 70% of all water
withdrawals (FAO 2020) and land dedicated to irrigated
agriculture totals approximately 3.67 million km2 (Meier et
al. 2018). Irrigated cropland produces double or triple the
yields of rainfed crops in semiarid and arid regions (Musick
et al. 1994, Norwood 1995; Evett et al. 2020a). However,
today more than ever, water scarcity and water quality
issues are challenging sustainable water management.
The situation is greatly exacerbated by climate change,
population growth, declining water resources, and
competition for water from other users and economic
sectors. Without irrigation, crop yields are unstable in areas
where rainfall is unpredictable (Oweis et al., 1998; Lamb
et al., 2011); subject to significant loss where rainfall is
minimal, such as in semi-arid and arid regions (Klocke et
al., 2012; O'Shaughnessy et al., 2014); and susceptible to
substantial crop failure during periods of heat stress and
drought (Lobell et al. 2013; Rippey 2015; Lesk et al. 2016;
Otkin et al. 2016).

Using irrigation to improve the quantity and quality of
grain yield is an essential agricultural practice (Sadler

et al. 2005), especially in arid and semi-arid areas. The
irrigation sector accounts for more than half of global
freshwater consumption (Johansson et al. 2002). Yet, this
water-demanding sector is compelled to optimize water
usage more strategically due to the increased competition
from expanded water-dependent industries (e.g., energy,
mining, manufacturing, etc.), the increased public concern
over water availability and quality, the rising cost of water
and energy resources, and the increased frequency of
extreme climate events.

Historically, irrigated agriculture in the United States was
concentrated in the west; however, over the past 70 years,
there has been a decline in irrigated acreage in this region
and a shift of irrigated cropland eastwards and northwards
into the Mississippi Delta, Southeast region and Northern
Plains regions, respectively. Irrigation systems in the

U.S. have become more efficient in recent years, mainly
due to the widespread conversion from gravity flow

to pressurized irrigation systems (USDA-NASS 2019).
However, due to water scarcity, there is continuous
pressure on the agricultural sector to improve irrigation
application efficiency and yield per unit of water used by
the crop (crop water productivity).

Site-specific water management, or delivering water to

a specific location, has been in existence for thousands
of years (Evett et al., 2020b) and can be achieved with
gravity flow or pressurized irrigation systems. An example
involving gravity flow systems is the automation and
control of canal water to improve water management
(Merkley et al. 1990) and overcome unreliable or uneven
water distribution (Shahdany et al. 2018). In pressurized
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U.S. irrigated farmland acres in gravity and pressurized systems, 17
Western States, 1984-2018

Irrigated acres in the open (million)
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W Acres in gravity systems Acres in pressurized systems
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Note: Data are for acres irrigated in the open (i.e., area in greenhouses and other enclosed
structures is not included). Gravity irrigation systems use on-field furrows or basins to
advance water across the field surface through gravity-means only. Pressurized systems
(e.g., center pivots) apply water under pressure through pipes or other tubing directly to
crops. Pressurized irrigation includes acres irrigated by sprinkler and micro/drip irrigation
systems. The 17 Western States are Arizona, California, Colorado, Idaho, Kansas, Montana,
MNebraska, Nevada, New Mexico, North Dakota, Oklahoma, Oregon, South Dakota, Texas,
Utah, Washington, and Wyoming.

Source: USDA, Economic Research Service using data from USDA, National Agricultural
Statistics Service, Farm and Ranch Irrigation Survey (1984-2013) and Irrigation and Water
Management Survey (2018).

systems, zone-controlled drip irrigation is used in vineyards
and orchards to apply water during specific growth stages
to improve fruit quality and water use efficiency (Katz

et al., 2022). For sprinkler irrigation systems, moving line
source systems, also known as traveling trickle (Howell
and Phene 1983) or mobile drip irrigation (Kisekka et al.
2017, O’'Shaughnessy and Colaizzi 2017), are under trial to
investigate application efficiency and reduction in water
losses from evaporation and high wind speeds. Most
moving sprinkler irrigation systems can apply variable
amounts of water laterally along the direction the irrigation
system travels using speed control. Variable rate irrigation
(VRI) hardware in the form of zone (a bank of sprinkler
nozzles) or individual nozzle control allows watering rates
to be varied along the lateral, as well in the direction of
sprinkler movement. Prescription maps for VRI systems
can be useful to customize application depths based on
variable soil textures within a field or to withhold irrigation
over non-arable areas, such as creeks, ponds or non-
cropped areas, that are located within an irrigated field
(Pierce 2010). Finally, greenhouse and vertical cultivation
systems integrate automation and ecological control

of the growing environment (temperature, light levels,
humidity, carbon dioxide, etc.) with site-specific water and
nutrient management for specialty crop production (Lu
and Grundy 2017).

Precision irrigation (including variable rate irrigation)

may include a variety of technologies and practices to
achieve precise application rate, placement, and timing
of irrigation water to a crop’s root zone to optimize crop
water use. With increased popularity and advancement in
variable rate technologies, the concept of VRI is becoming
more prominent (Sui et al., 2015; Evans et al., 2012;
Corwin and Lesch, 2003). This approach aims to reduce
water wastage and increase crop yield by controlling the
application of water with the right amount at the right
time (via a scheduling tool) and at the right location.
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Various commercial VRI systems have been available
for several years and have received increased attention
from producers and irrigation specialists who search for
innovative strategies to improve water productivity and
conservation.

Research shows that VRI can achieve an average of
10-15% and up to 50% reduction in water consumption,
depending on the efficiency of system components

as well as the specifications of the irrigation sites,
compared to uniform management (Council of
Canadian Academies, 2013; Sadler et al., 2005). With
the combination of other technologies, such as proximal
soil sensing, global navigation satellite systems (GNSS),
geographic information systems (GIS), and wireless data
communication, VRI allows for fine-tuning the application
of water to meet site-specific crop requirements. This
subsequently helps to maximize crop yield and minimize
water and/or energy consumption. Approximately 99%
of VRI systems are designed to retrofit a center pivot
irrigation system, which is more efficient and less labor-
intensive than other types of moving irrigation systems
(Evans et al., 2012).

In brief, a center pivot VRI system comprises a pivot
rotating a pipe carrying multiple sprinkler nozzles centered
in an agricultural field. Generally, two types of VRI systems
are available: Speed Control (SC) and Zone Control (ZC)
(Oliver et al., 2013). Speed Control keeps a constant water
flow from nozzles while altering the pivot travel speed in
angular increments as small as 1 degree. The application
amount is then varied locally within each radial sector. Zone
Control allows higher levels of irrigation control as the pie
wedge-shaped sectors can be subdivided into smaller field
segments by adding irrigation control zones along the
lateral pivot arm. However, Zone Control is not restricted
to subdividing the wedges and it should be able to handle
roughly any shape of management zone, within the limits
of the irrigation system design. The application amount is
then allocated into each field segment, whose area is varied
according to the size of angular increments, distance from
the pivot point, and the number of control zones.

Microirrigation technologies (microspray, surface drip, and
subsurface drip irrigation) also have advanced capabilities
for precise placement, timing, and rates of irrigation.
According to Lamm, et al. (2021), subsurface drip irrigation
(SDI) has continued to expand in recent years with
development and ongoing research of technologies and
management strategies for application to an expanding
variety of crops. Despite some persistent challenges, there
is still opportunity for further expansion of SDI. Variable
rate drip irrigation is now being used in vineyards to

apply precise amounts of irrigation to specific irrigation
zones, reducing variability in yield and quality (Nadav and
Schweitzer, 2017). Research is also underway to develop
variable rate drip emitters that can be controlled remotely
to enable field-scale variable rate drip irrigation systems
(AL-agele et al., 2021). With good design, installation,

maintenance and management, microirrigation systems
offer potential for achieving high application efficiency
and application uniformity, and hence precision in
placement and rate of applied water.

Spatially variable crop water needs can result from
differences in microclimate, field topography, soil physical
properties such as soil texture, apparent electrical
conductivity, salinity, and pest or disease infestation
(Smith et al. 2009). Precision irrigation technologies
combine site-specific irrigation systems with sensor
feedback to detect differences in crop water status in
space and time (over a growing season) (Figure 2). These
technologies, when managed and functioning properly,
apply water in the right location, at the right time, and

in the right amount. Several academic, government, and
private institutions are independently developing precision
irrigation systems in the U.S. (Evett et al. 2020c¢; Zhang et
al. 2021) and working with farmers to increase adoption
of water-smart technologies (Bondesan et al. 2019; Ortiz
et al. 2021). Information from the sensors provides input
for models or algorithms whose outcomes can be used

to predict crop growth, monitor crop status, or schedule
irrigations. Pressurized systems in the form of moving
sprinklers or microirrigation systems also are generally
well-suited to automation, offering relatively easy
application with emerging “smart” irrigation technologies
and controllers. An example is the ARSPivot software
(Andrade et al 2020) integrated with the Irrigation
Scheduling Supervisory Control and Data Acquisition
(ISSCADA) system (Evett et al. 2020), which uses sensor
feedback to recommend scientific irrigation requirements.

Precision irrigation technologies implemented alone or

in combination with improved cultivars could be used in
water-limited regions to improve crop water productivity or
crop quality. For example, precision irrigation in vineyards
or orchards could improve the quality of fruit and raise the
value of the product (Bahat et al. 2019; Cohen et al. 2021).
Precision irrigation technologies typically incorporate
automation and control by monitoring crop or sail

water status, predicting when to apply an irrigation, and
automatically turning the irrigation system “on” and “off”,
thereby offering convenience and time savings to farmers.
The application of precise amounts of water to exact
locations within an open field or in a controlled environment
could be more cost-effective and environmentally favorable
than uniform application of water. Other potential benefits
of precision irrigation include minimizing water wastage,
aiding in compliance with regulatory requirements for water
allocation, and improving yield per unit of water applied
where water is limited. Smart irrigation systems could

help develop strategies to mitigate unpredictable rainfall
and increase the resilience of irrigated agriculture from
climate change by enabling adaptive control. However,

N
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Figure 2. Graphic showing different types of
sensor feedback monitored at different scales
used for site-specific irrigation management of
cropped fields.

the economic return versus the cost of VRI and precision
irrigation technologies must be carefully considered
(Sharma and Irmak 2020; O'Donnell et al. 2023), not only at
the agronomic or irrigation engineering and crop science
fields, but also in production fields. Their implications for
economic and environmental services also need to be
quantified, demonstrated, and disseminated for a wider
adoption (Irmak et al. 2012).

Decision Support Systems for Precision
Irrigation

Irrigation scheduling technology

The amount of water required to maximize yield and/or

crop water productivity varies depending on the crop, the
growth stage of the crop, and the environmental demand.
Precision irrigation systems can be managed to adapt

water applications to different crop growth stages or crop
evapotranspiration requirements within the growing season.
Adaptation requires fundamental information provided by
the farmer (crop type, planting date, soil type, water stress
thresholds, and soil water depletion thresholds) to predict
crop growth stages. Data collected from sensors, such as
soil water content, plant (canopy) water stress sensors, and
nearby weather data, can be used to adjust irrigation control
strategies throughout the growing season (McCarthy et al.
2010 a, b). Adaptative irrigation control strategies could also
use historical information to predict rainfall and help manage
irrigation timing.

Management zones

Management zones (MZ) are areas within a field that
have similar features and can be treated in a like manner
or managed as a separate area. The boundaries of an MZ
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can be static or dynamic. As of today, most MZ are static,
meaning that the physical boundaries of the zones remain
the same over time. These zones are typically established
based on physical soil textural or hydraulic properties,

soil electrical conductivity maps, topographical or digital
elevation maps, and historical yield data (Bevington et al.
2019, Cohen et al. 2021). Although MZ boundaries may be
static, prescription maps for these areas can be dynamic
to address changes in crop water status over time. It is also
possible that MZ boundaries can be dynamic when using
aerial or satellite imagery; however, software development
is needed to downscale the new boundaries into a format
that is usable by a moving irrigation system or by developing
variable rate emitters for drip irrigation systems.

Whether management zones are static or dynamic, it

is necessary to upload MZ boundaries to the irrigation
controller or the nutrient application equipment. Different
methods can be used to delineate MZs; examples include
manual methods by overlaying a semi-transparent gridded
map of a field over a Google Earth image and using GIS
mapping software to draw MZ boundaries based on physical
features of areas that do not yield well or are non-arable.
Statistical methods, such as kriging, cluster analysis, and
multivariate regression, can be used to partition spatially
variable data into homogeneous clusters to develop MZs
within in a field (Fraisse et al. 2001; Basso et al. 2007,
Haghverdi, et al. 2015; Peeters et al. 2015; Bevington et al.
2019; Ohani-Levi et al. 2019). Statistical methods can also be
used to provide the optimal number of MZs in a field, a value
that is usually based on economics (Figure 3). Satellite and
drone imagery has been very useful in providing attributes
used in MZ delineation. The attributes include hydraulic
conductivity curves; soil physical properties (texture, bulk
density); water retention curves; shallow and deep soil
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apparent electrical conductivity (ECa); canopy and bare soil
reflectance measurements; crop yield maps; non-invasive
soil information; soil properties; digital elevation mapping;
and terrain information (Morata, 2020; Flint et al., 2023).
However, all these variables are very difficult to map at
usable spatial resolution and their beneficial utilization for
MZ delineation can result in variable successes.

The boundaries of a MZ that can be effectively managed
by center pivot or linear move irrigation systems equipped
for VRI are influenced by the way in which different
manufacturers implement VRI for their irrigation systems.
Some manufacturers use an underlying grid of trapezoids
(for center pivot systems) or rectangles (for linear move
systems); the areas correspond to the smallest areas for
which irrigation amounts can be individually controlled by
the VRI system. An MZ for a VRI system using an underlying
grid can be created by grouping a set of areas with similar
characteristics. Thus, the boundary of the MZ will be
determined by the outer perimeter of all the grouped areas
that are part of the MZ (Figure 3). Other manufacturers
use a different approach, where an MZ is delimited by a
set of points that correspond to the corners of the MZ.
The geographic coordinates of this set of points must be
obtained to generate the MZ.

Figure 3. Grid of trapezoids upon which six Management Zones (MZs)
were generated using the ARSPivot software (Andrade et al. 2020) by
grouping six sets of trapezoids with similar characteristics. The red line
represents the angular position (61°) of a center pivot Variable Rate
Irrigation (VRI) system.

Soil water monitoring

Precision irrigation scheduling based on soil water sensing
involves monitoring soil water content in the root zone—at
two or more depths, in the case of soil water sensors—
until a pre-established threshold is reached. Irrigation
water is then applied to replenish soil water depletion in

each management zone. Soil tension (matric potential) is
not directly measured but is a surrogate variable strongly
influenced by, for example, permittivity, resistance, travel
time of broadband step pulse, neutron intensity, etc.

Soil water sensors can also be used to track root water
uptake dynamics characterized by sharp declines in water
content during the day and negligible changes in soil water
at night. Examples of commercially available soil water
sensors include soil water potential sensors (tensiometers),
resistivity-based sensors (e.g., gypsum block), capacitance
sensors, sensor-based on time-domain (TDR), and frequency
domain reflectometry (FDR). Neutron probes are the most
accurate method to measure soil water content as a low-
level radioactive source is lowered into an access tube
near the plant’s root system and measurements are taken
at multiple depths. Neutron probes are primarily used only
in research and not in production fields because of the
extensive labor involved in using the instruments, their high
cost, and the regulations related to radioactive material
(source). Passive neutron probe sensors called cosmic ray
neutron sensing are beginning to be commercialized. The
advantage of this sensor is that it has a footprint scale of a
few hundred meters.

Since soil water content is not measured directly, site-
specific calibration must be done for each sensor to convert
a surrogate soil variable to soil water content. Another
disadvantage of most commercially available sensors is

that they sense a very small soil volume, which results in
variability between sensor replicates, making interpretation
very difficult. While the science behind how these different
sensors operate has not changed for decades, significant
improvements in electronics and data communication
protocols have resulted in lower costs and seamless real-
time monitoring (Kisekka et al. 2022). However, most
growers use soil water sensor data to qualitatively assess
trends in soil water dynamics, but not to determine actual
soil water content. Because precision irrigation requires
recommendations for irrigation depths and often involves
multiple MZ, the challenges are to determine the optimum
number of soil moisture sensors to install in each MZ and

to provide actionable information. There are many soil
moisture sensor companies and the industry has evolved.
One trend has some ag tech companies that sell data
service charging growers an annual or seasonal subscription
to access soil water data (e.g., Hortau, Irrometer Company,
Sentek Technologies, METER, GroPoint, Acclima Inc., etc.) or
receive irrigation scheduling recommendations (GoAnna Ag,
GroGuru, Prospera).

In agricultural production and natural ecosystem fields,
heterogeneity in soil moisture can exist due to numerous
factors, including landscape/topography; cropping system/
vegetation types and their characteristics; soil physical,
chemical, and hydraulic properties; meteorological/

climate variables, especially non-uniform distribution of
precipitation; intended or unintended (wind drift, sprinkler
malfunction, etc.) non-uniform irrigation applications; soil
management practices, including tillage management;
nutrient management; and other variables (Irmak et al., 2022;

N

cast ?



Wilson et al., 2004). Thus, in addition to soil water sensing
technology performance and adaptability in different soll
types, spatial variability should be accounted for in various
agronomic management practices, including practicing
effective irrigation management (Irmak et al., 2022).

Soil-water and plant stress monitoring

Precision irrigation scheduling based on plant water status
monitoring involves the use of sensors that measure water
stress directly (e.g., pressure chamber) or indirectly (e.g.,
dendrometers). Plant water status monitoring for precision
irrigation is commonly used in specialty woody perennial
crops, e.g., almonds, citrus, pecans, and grapes, as well as
agronomic row crops such as soybean, maize, sorghum.
Midday stem water potential (SWP) has been proven as the
best indicator of plant water status because it integrates
soil factors for the entire root zone and environmental
conditions (Fulton et al. 2014). SWP measures the water
tension in the plant; low stem values are related to low
sap-flow velocities and can be caused by low soil moisture
(Kume et al., 2007). SWP is dynamic and is not only affected
by soil water content but also environmental conditions

and management. SWP changes diurnally and seasonally,
and it is a more difficult method to develop absolute

general thresholds for triggering precision irrigation events
as compared with monitoring soil water content. For this
reason, SWP measurements should be benchmarked against
a reference or baseline SWP for non-water stressed trees
under the same environment (Kisekka 2022). Measurements
of midday SWP are usually collected around solar noon

or between 1and 3 p.m. when SWP is minimum (i.e., most
negative). In some crops, such as grapes, leaf water potential
(LWP) is used. LWP does not require placing a leaf into an
aluminum bag before placing it in the pressure chamber and
tends to be quicker to measure. However, it is more sensitive
to atmospheric demand and tends to be more variable
compared to SWP. Although SWP is preferred, measurement
of midday SWP is labor-intensive, which has contributed to
its lack of widespread adoption in precision irrigation.

To overcome this challenge, recent research and
development has focused on making sensors that can
continuously measure SWP. These sensors can be broadly
categorized into osmometers and micro-tensiometers.
The osmometer sensors measure pressure changes due
to changes in osmosis of the chamber fluid. The sensor
has a semi-permeable membrane that allows water
movement between the tree xylem and the sensor fluid
chamber (Meron et al., 2015). The change in pressure
measured by the sensor can be interpreted in terms

of stem water potential. Other types of SWP sensors
act as micro-tensiometers. Micro-tensiometers are
based on tensiometry, a technique for measuring the
chemical potential of stretched liquid water based on

a thermodynamic equilibrium between the stretched
water and its vapor (Pagay, 2014). An example of
microtensiometer SWP is the FloroPulse stem water
potential sensor (Kisekka, 2022). Overall, research has
shown good agreement between SWP sensors and

N

the pressure chamber, which is used as the scientific
benchmark for SWP monitoring.

Plant water status monitoring for implementing precision
irrigation scheduling can also be accomplished using
dendrometers. Dendrometers measure the mean daily
shrinkage (MDS). MDS refers to the difference between
daily maximum and minimum trunk diameter. Soil water
depletion or more demand from weather causes the trunk
to shrink more each day. Research in almonds has shown
dendrometers to be good indicator of plant water stress.
An example of a commercially available dendrometer for
precision irrigation is Phytech Ltd. (https://www.phytech.
com/). Other types of sensors that have been successfully
used to monitor water stress include sap flow gauges that
have been commercialized to support operational precision
irrigation scheduling (e.g., TreetoScope). However, data
from sap flow gauges can be variable, making it difficult to
extract insights to inform precision irrigation scheduling.

While SWP and dendrometers have been used successfully
in precision irrigation management, they are more commonly
used in high-value crop production. Monitoring canopy
temperature remotely using thermal sensing has been a
longstanding practice to characterize crop water stress

by converting the data into a thermal stress index. Popular
indices are the crop water stress index (CWSI) (Meyers et

al. 2019; Drechsler et al. 2019), the DANS index (degrees
above non-stressed plants) (DeJonge et al., 2015), and the
TTT method (time-temperature threshold) (Wanjura et al.,
1995). Remotely sensed thermal data can be captured from
satellite, aerial, or ground-based platforms; regardless of the
platform, data must be geolocated. While the CWSI can be
an effective tool for quantification of plant water stress level
and can aid irrigation decisions, Irmak et al. (2000) showed
that this method is primarily effective in determining
irrigation timing and yield estimation rather than providing
guidance or recommendations for irrigation amount.
Thermal imagery from satellite sensors has been used to
estimate regional crop water use (evapotranspiration). While
satellite imagery may be too coarse for precision irrigation
scheduling on individual farms, algorithms have been
developed to downscale the information to the sub-field
scale (Ha et al. 2013; Wang et al. 2017), and thermal imagers
mounted on unmanned air vehicles provide imagery at a
higher resolution (Lacerda et al. 2022). However, with all
platforms, a software with functional algorithm(s) interface
is needed to translate the acquired data into watering rates
using a format compatible with the variable rate irrigation
controller. While plant-based measurements typically signal
crop water status sooner than soil water status, the use of
plant-based sensors is not popular among producers.

Significant progress has been made both by university
research and extension programs, as well as the commercial
irrigation industry in the U.S., to develop irrigation
management apps that are either web- or smartphone-
based. With minimum inputs desired from the user, such

cast ?



as location, planting/harvesting dates, crops, and irrigation
system characteristics, these apps can simulate the soil
water balance by retrieving public weather and soils data to
provide real-time irrigation scheduling prescriptions. Some
of these apps are aimed at eliminating the need for installing
weather monitoring or soil moisture sensors at the site,
although provisions to add such instrumentations into the
app may exist. To enhance the predictive accuracy, however,
some of the apps are specifically designed to process
field-measured soil moisture data/information to provide
more effective and representative recommendations
(rather than relying on modeling) for a specific field
condition (Irmak 2010; Bordovsky et al. 2017; Irmak 2023).
The accuracies achieved in decision-making by relying on
university-developed irrigation management apps have
been evaluated against ground truth data in contrasting
conditions (Andales et al. 2014; Bordovsky et al. 2017; Brad
and Phil 2017; Cahn et al. 2015; Carlson 2019; Han 2016;
Irmak et al. 2010; Kisekka and Kim 2018; Migliaccio et al.
2015; Peters et al. 2013; Rogers 2012; Sanford and Panuska
2015; Scherer and Morlock 2008; Stevens 2014; Vellidis et
al. 2016; Wright 2018; Irmak 2023). These decision tools are
welcomed by local producers as a free-of-cost irrigation
management solution that can be used either singularly or to
complement other solutions, such as soil and plant moisture
sensors. Some commercially available irrigation apps can
further streamline irrigation management by allowing

the smartphone to communicate with multiple irrigation
systems on the farm. This integration of devices has been
saving substantial time and fuel that otherwise would have
been spent by the producer for manual irrigation operations,
justifying investment on irrigation app subscriptions.

High spatial variability of rainfall is somewhat challenging to
be measured by the limited to moderate spatial distribution
of weather monitoring networks, hindering robustness

of app simulations (Migliaccio et al. 2015). There is
significant future promise for irrigation management apps
to incorporate real-time crop feedback into simulations, as
remotely sensed soil and crop status information becomes
cheaper and more accessible. The short-term weather
forecasts can also be effectively used in irrigation decision
support apps. Additionally, advances in data analytics by
employing machine learning algorithms may overcome the
need for otherwise complex parameterization of soil water
balance models.

Decision support systems for variable rate
irrigation Platforms for ET monitoring

Evapotranspiration (ET) is the largest component of the
soil water budget in any terrestrial ecosystem, including
agricultural fields. Thus, accurate determination of crop

ET becomes a necessary precursor to efficient irrigation
management, especially when relying on soil water

budget techniques. Crop ET can be indirectly or directly
measured using sophisticated instrumentation, such as
Eddy Covariance systems, Bowen Ratio Energy Balance
Systems, lysimeters, scintillometry, sap flow gauges, stable
isotopes, etc. The use of such techniques, however, is

limited to research applications, being complex, costly,

and requiring substantial time investment. Typically, crop

ET is estimated using mathematical formulations that
integrate the atmosphere’s demand for water (demand side)
with soil and crop condition (supply side). For irrigation
management applications, the two-step method reported

in FAO-56 (Allen et al. 1998) and more recently outlined by
Jensen and Allen (2016) is widely used by practitioners. This
procedure is heavily employed in data-scarce environments
by assuming crop growth and water uptake patterns. Since
a lack of precise soil and crop monitoring is generally typical
of commercial production environments, the two-step
approach is one of the tools to tracking ET in irrigation
scheduling and is frequently used in water management
apps. ET determination using the two-step approach has
been shown to improve significantly when site-specific data
on soil and crop conditions are incorporated (Pereira et al.
2020; Kimball et al. 2019; EI-Naggar et al. 2020). For accurate
crop ET determination, one of the central requirements is
robust estimates of evaporative demand of the atmosphere,
often represented by reference evapotranspiration (ETo).
Within the Unites States, this need is effectively fulfilled

by ET networks constituting geographically distributed
automated agricultural weather stations. These stations

are supposed to be properly sited over unstressed grass

or alfalfa-reference surfaces, instrumented to measure air
temperatures, solar radiation, relative humidity, and wind
speeds, and rigorously maintained (ASABE engineering
practice standard EP501.1 2015). Some major ET networks
in the U.S. are California Irrigation Management Information
System, the Arizona Meteorological Network, High Plains
Regional Climate Center, New Mexico State University
Climate Center, Colorado Agricultural Meteorological
Network, North Dakota Agricultural Weather Network,
Kansas Mesonet, Oklahoma Mesonet, and Missouri
Agricultural Weather Station Network. Sub-field scale crop
ET estimates are critical for precision irrigation management
and much progress has been made in this direction by
employing in-field mounted sensor systems (Andrade et

al. 2020; Peters and Evett 2008; Payero and Irmak 2006),
unoccupied aerial systems (Mokari et al. 2022; Nieto et al.
2019; Chavez et al. 2020), and satellite platforms (Xue et

al. 2020; Mateos et al. 2013; Bhatti et al. 2020; Melton et al.
2012; Senay 2018). Proximal and remote-mounted sensors
detect electromagnetic radiation reflected from soils and
crops and estimate the degree of water stress for better
informed ET estimation. Integrating Landsat images with
different ET algorithms, field-specific crop ET information for
the western U.S. has recently become available to the public
via the OpenET (Melton et al. 2021) program, where users
can retrieve current and recent historical ensembles of crop
ET for their fields.

Role of computer simulation and data
assimilation

According to the most recent Irrigation and Water
Management Survey (USDA 2018), crop simulation
models are the least used scientifically-based irrigation

N

g

cast



scheduling tools among irrigators in the United States.
The main obstacles to adopting crop simulation models
for operational precision irrigation scheduling are the
absence of evidence that these models provide a return
on investment and the complexity associated with their
implementation in real farm situations.

Irrigation scheduling models based on simple IF-THEN rules
(i.e., irrigate if situation X happens) that in some implicit
fashion reflect our understanding of the system have been
around for decades. The drawbacks of these types of
models are that the rules tend to be very complex and are
crop- and soil-dependent. In other words, this approach
tends to provide a solution to a specific problem rather
than a generic framework that can be applied to other
crops/locations with minimal adjustments. Crop model-
based irrigation scheduling can overcome this limitation

by providing a more generalizable framework. But crop
model imperfections due to model structure or parameter
uncertainty are commonly pointed out as the main obstacles
to implementation of crop model-based optimization in
precision irrigation. Real-time data assimilation of crop or
soil measurements has been shown to improve models’
predictive power, and associated irrigation decisions. Linker
and Kisekka (2022) showed that assimilating LAl alone
significantly improved irrigation outcomes of a model-based
irrigation optimization framework. To advance the use of
crop simulation models in precision irrigation, future work
should focus on combining model-based optimization and
real-time data assimilation.

Deficit irrigation

Globally, irrigated agriculture is experiencing competition
from municipal, industrial, and environmental needs for
water, and decline in freshwater supplies (Porkka et al.

2016; Richter 2016). In water-limited areas such as the
western U.S., water consumption for irrigation can exceed
water supplies from surface and groundwater resources,

and competing interests can increase water prices. Water
markets allow farmers to transfer water to other higher value
users during critical periods of water shortages (Richter
2016; Szeptycki and Pilz 2017). To optimize overall farm
economy, farmers can practice deficit irrigation, which is an
effective tool to apply less water than what is required to
fully meet crop needs, resulting in lower yields (or quality)
but maximized net income. The principle behind deficit
irrigation is to change the goal from maximum yields and
gross income per area to acceptable yields that maximize
water productivity and economic gain while operating within
the water supply constraints posed by limited or expensive
water. Drought tolerance of a crop can vary by phenological
stage, and hence an important precursor to effectively
implementing deficit irrigation strategy is precise knowledge
of crop response to water limitations. This response is
represented using a crop water production function,

which establishes a relationship between marketable yield
and total crop ET (Stewart et al. 1977; Hexem and Heady
1978; Doorenbos and Kassam 1979; Taylor et al. 1983). Also
important is conducting an economic assessment of the

N

tradeoffs expected between yield and water costs (English
1990; English and Raja 1996; Trout et al. 2020; Trout and
Manning 2019). Global meta-analyses have confirmed across
experimental conditions that higher water productivity can
be achieved under deficit irrigation, including cotton (Cheng
et al. 2021), wheat (Yu et al. 2020), maize (Allakonon et

al. 2022), tree fruit (Tong et al. 2022; Adu et al. 2019), and
vegetables (Singh et al. 2021; Adu et al. 2019). With fiercer
pressure on water resources and more intense and longer
droughts projected across global irrigated agroecosystems,
deficit irrigation will enable producers to stabilize returns in
an uncertain future.

An Economic Approach to Optimize the
Spatial Scale of Water Management Using
Variable Rate Irrigation

According to Walton et al. (2010), the adaptation or
abandonment of a technology depends on whether it

can create desirable and continued economic returns.
Currently, the economic advantage of VRI technology is still
uncertain with limited supporting evidence due to (1) the
complexity of assessing the monetary value of various VRI
water management and hardware options as compared with
revenue from potential yield increase or water savings, and
(2) the variation of crop, soil, environment, and technology.
Understanding the relationships between soil, water, and
crop yield is key and the most challenging task.

Yield response to water availability, known as the water
production function (or yield response function), has been
studied for over fifty years for the purpose of improving
water productivity. This response can be divided into

two phases: deficit irrigation and surplus irrigation or
waterlogging (Hanna 2006; Mannocchi and Mecarelli
1994). Under water deficiency, crop yield increases with
increased amounts of irrigation water until the maximum
yield is achieved (Schneekloth et al. 2009; Brumbelow and
Georgakakos 2007; Al-Jamal et al. 2000). The minimum
amount of water that can achieve the maximum yield is
referred to as the yield-maximizing irrigation amount. The
proper timing of the irrigation through an effective irrigation
scheduling plays a very important role in this process

as well. Yield declines once irrigation water exceeds the
yield-maximizing value. Intensive efforts have been made
to obtain yield increase response under water deficiency
(Al-Jamal et al. 2000). Yield increase following a quadratic
function has been reported for corn, onion, cotton, maize,
wheat, and forage crops (Kiani and Abbasi 2012; Quiroga
et al. 2011; McCuistion et al. 2009; Garcia-Vila et al. 2009;
Jalota et al. 2006; Cetin and Bilgel 2002; Howell et al.
1995). Because soil type; elevation and its derivatives, such
as slope; aspect; topographic wetness index (TWI); flow
direction; flow length; and catchment area affect yield
variability, these factors must be included when assessing
whether a VRI system may improve economic returns.

Through field experiments, Sharma and Irmak (2020)
conducted economic comparisons of VRI with fixed
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(uniform) rate irrigation (FRI) and no irrigation (NI) in
combination with three nitrogen application strategies

of fixed (uniform) rate fertigation (FRF), variable rate
fertigation (VRF), and pre-plant nitrogen (PP) management
for maize (Zea mays L.). For the economic analyses, the
average initial investment of the irrigation system and
necessary VRI technology, salvage value of the system,
total capital investment, total fixed cost, net present value
(NPV), and internal rate of return (IRR) were quantified by
considering numerous factors/variables, including interest
rate, production input cost, longevity of the system,
insurance cost, ownership cost, and salvage value. Soil types
and irrigation management strategies (treatments) had
significant impact on grain yield and thus on profitability,
NPV, IRR, and irrigation system payback period. Net income
from FRI management was significantly higher than VRI
management in all soil types. The nitrogen treatments did
not affect net income in any of the growing seasons. The
FRI management strategy had a positive NPV in all soil
types, whereas VRl management in soil types S2 (Hastings
silty clay loam) and S3 (Hastings silt loam) had negative
NPVs. The negative NPV indicates that the present value
of the costs exceeds the present value of future profits

at the assumed discount rate (5%). Sharma and Irmak
(2021a) quantified and compared the soil-water dynamics,
including available water (AW), and ETc during vegetative
and reproductive growth periods of VRI, FRI, and NI under
FRF, VRF, and PP nitrogen management in three different
soil types. Sharma and Irmak (2021b) quantified and
compared maize growth and development [leaf area index
(LAI) and plant height], grain yield, crop evapotranspiration
(ETc), irrigation-yield production functions (IYPF),
evapotranspiration-yield production functions (ETYPF),
and crop water productivity (CWP) under VRI, FRI, and NI
at fixed rate fertigation (FRF), VRF, and pre-plant nitrogen
(PP) management in the same environment and under

the same agronomic management practices. The VRF
treatment used 20% less fertilizer as compared with PP and
FRF treatment without significantly (P > 0.05) reducing
the grain yield. In the higher elevation soil S1, the grain
yield was not significantly different (P > 0.05) between

FRI and VRI treatments. However, in S2 and S3, which
have lower elevation, yield in FRI was 43% and 55% greater
than the yield in VRI, respectively. On average, under VRI
management total irrigation amount was 24% lower than
FRIin S1, with only 4% reduction in yield as compared with
FRI. Soil type impacted the response of maize grain yield
to ETc and the responses also varied between FRI and

VRI. They concluded that, in most cases, FRI had superior
performance in terms of maintaining optimum crop yield
and reducing yield variations than VRI. VRI management
based on soil water status has the potential to maintain
maize grain yield and improve CWP as compared with FRI
in certain conditions or soil types, such as in S1 Crete silt
loam. However, further research is needed to validate/
justify its adoption for the fields with significant spatial soll
heterogeneity (both in horizontal and vertical domains) and
to understand the economics of VRI-VRF systems.

Economic assessment of irrigation
management

The decision to adopt new technology is very crucial to

the economics of the farming business. To determine if
optimizing water usage by intensifying irrigation control

(i.e., adding more control zones over a pivot arm) with

a VRI system was a financially justified decision, a partial
budgeting analysis of irrigation management was conducted
and demonstrated. Partial budgeting evaluates the financial
effects of the business resources that will be changed
(Dalsted and Gutierrez, 1990). In the case of irrigation
management, the resource that needs to be optimized is the
amount of irrigation water. Note that this water optimization
was achieved by allocating irrigation water to smaller field
segments to minimize water wastage.

Under the partial budgeting concept, the economic
assessment of irrigation management was conducted

by evaluating the net return, financial loss, and capital
investment in water optimization across different levels of
irrigation control.

Net return of irrigation management

The net return from irrigation management was calculated as
the difference between the additional income and the cost
of altering the amount of applied water. Under this concept,
the net return of water optimization was expressed as:

To = Zi=1 [PyY; — (ew + cp)Qlay

in which r was the net return of a given field segment
delineated under a specific uniform level of irrigation control
($-yr ), Q was the total irrigation amount applied to this
segment (mm-yr~), n was the number of elementary field
areas (interpolation pixels) within this segment, Y, was the
yield of it" elementary field area (t-ha'-yr-") within this
segment responding to Q, a, was the size of i*" elementary
field area (ha), p, was the price of grain yield ($-t™), ¢, was
the cost of irrigation water ($-mm-'-ha"), and cf was the
cost of energy for pumping water ($-mm-"-ha™").

Using the equation above, the optimum net returnro_, was
obtained when the optimum irrigation amount Qopt was
applied. In this case study, the amount of Qopt for a particular
segment was determined by testing different values of Q
with an increment of AQ until the maximum net return was
achieved. After selecting the optimum irrigation amount for
each field segment, the optimum net return of a given field
under a specific level of irrigation control was expressed as:

_ TTt
Rﬂpt =1 r@aptr

in which R, Was the optimum net return for a field under
a specific level of irrigation control ($+yr ), ro,y Was the
optimum net return of jt" segment within this field ($-yr),
and m was the number of irrigation segments.
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Economic loss of irrigation management

Maximizing the net return of water optimization by
subdividing a field into an infinite number of small segments
is not practical due to the complexity and potential
uncertainty involved in such management. Naturally,
enlarging segment areas with low irrigation control results in
greater deviation from the maximum (theoretical) attainable
net return due to sub-optimal water usage. Such economic
deviation was quantified using:

Roptmax —Ropt
L= e

in which L was the economic loss of a specific level of
irrigation control ($+-ha™"-yr™), Re, was the maximum
attainable net return for a given field when considering
segment areas were as small as the elementary field areas
(interpolation pixels) ($-yr-'), and A was the total area of the
field (ha).

Capital investment in irrigation management

To achieve water optimization through different levels
of irrigation control, costs of control systems need to be
evaluated. Such expenditures were quantified using:

B = CcristCisctCizctnzeczc 4y
A

in which C was the capital investment of a specific level of
irrigation control ($-ha™"-yr™), C_, . was the cost of a center
pivot irrigation system ($), C_ was the cost of initiating
angular adjustment of water application (zone control) ($),
C.,. was the cost of initiating zonal adjustment of water
application ($), n,. was the number of control zones, ¢, was
the cost of each additional control zone ($-zone™"), dy was
the prorate coefficient to annualize capital investment over
given number of years (20) at a specific interest and cost

depreciation rates.

The sum of L and C constitutes the economic disadvantage
of irrigation management to the end producer. Thus, the
goal of decision-making is to identify the level of irrigation
control that minimizes the sum of L and C among all
alternatives.

Sensitivity and profitability analysis

To evaluate the economic opportunity of irrigation
management under different fields and financial conditions, a
sensitivity analysis was also performed. The relative net return
was calculated as a deviation of net return when varying
nominal input values one-at-a-time to a maximum of +40%.

Moreover, the relative profitability was calculated to
evaluate the conditions under which adopting irrigation
management was economically viable. The profitability

was the difference between the net return and the capital
investment. By subtracting the profitability of the non-
irrigation management, the relative profitability of a specific
level of irrigation control was determined.

N

Levels of irrigation control

A total of 62 scenarios, grouped into no irrigation (NI),
uniform management (UM), speed control (SC), and zone
control (ZC) were proposed in this case study to represent
different levels of irrigation control. Two SC scenarios
represented a pivot rotating at 2° and 10° fixed rate
angular increments. Fifty-eight ZC combined these two
angular increments, with a pivot arm subdivided into up to
30 sprinkler banks (or control zones) to deliver different
irrigation rates simultaneously. Although the length of each
independently controlled bank is typically defined by field
anomalies and general field patterns, in this case study, it
was assumed that the field segments that could receive
different water rates were similar in size across the entire
field. This means the lengths of the sprinkler bank towards
the center of the pivot are longer than those towards the
edge of the field. With 62 scenarios, the number of individual
irrigation rates (or field segments) within a field could
range from 1 (e.g., Ul) to 5,400 (e.g., 2°-30 ZC: 2° angular
increments with 30 sprinkler banks). Figure 4 illustrates three
irrigation scenarios for a center pivot system with a lateral
length of 289 m. The innermost circular area (0.24 ha with
a 27.6 m radius) was excluded from evaluation, as generally
this area is either not irrigated or under-irrigated..

Demonstration of the application

To highlight the tool’s strength in the accounting field and
to address heterogeneity in decision-making regarding
irrigation strategy, a detailed field characterization of
water status was necessary to present the impact of water
optimization on profits. For that, an example data fieldand a
list of assumptions (Huang et al., 2015) were used.

Figure 4. lllustrations of three irrigation management scenarios: UM (left), 4° SC
(middle), 4°-15 ZC (right).

Example data field and field characterization

A circular agricultural field at the Alberta Irrigation
Technology Center (AITC) in Lethbridge, southern

Alberta, Canada (Figure 5) was selected as an example to
demonstrate the model's performance. The field was under
semi-arid climate conditions, and hard red spring wheat was
grown. A five-tower center-pivot VRI system with a span
length of 289 m and 129 sprinklers, manufactured by Valley®
Irrigation, has been installed to provide irrigation water. This
system allowed the water rate of each sprinkler to be altered
down to every 2° rotation increment. The total area under this
pivot system was approximately 27 ha;. The north-eastern
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quarter of the field) was not under observation to avoid
interrupting farming operations. The innermost circular area
(approximately 27.6 m in radius) was excluded, leaving a total
area under evaluation of approximately 20 ha. Full details of
the field experiment are available in Yari et al. (2017).

18 study plots

Pivot tower track N

Figure 5. A field case study located at the Alberta Irrigation Technology Center
(AITC) in Lethbridge, Alberta, Canada, was used as an example in this case study.

A detailed field characterization of the potential water
stress status was conducted using ECa and a topographic
survey. The Veris® 3100 EC Surveyor (1 Hz reading and
approximately 10 m intervals between passes) was used
to obtain ECa measurements. An RTK GPS receiver (1 Hz
sampling rate and approximately 5 m spacing between
passes) was used to collect topographic measurements.
ECa measurements ranged from 17 to 175 mS+m-1. Field
elevation ranged from 903 to 907 m. Although ECa served
as a proxy for water stress potential (WSP) and elevation
was used to simulate landscape-induced water-logging
susceptibility, these two variables could be replaced with
other data sources that provide high-resolution water-status
information.

To represent field characteristics of elementary field areas,
geospatial processing was performed on the dense sensing
measurements (e.g., ECa and elevation). An ordinary kriging
interpolation method was used to create interpolated

ECa and topographic maps. The topographic map was
converted to a topography wetness index (TWI) surface
using the open-source GIS software SAGA (Bohner and
Conrad, 2009). This software provides comprehensive
algorithms for processing various elements (such as
multidirectional convergence flow, catchment area, etc.)
required to estimate potential soil moisture variability
induced by landscape position (Silva et al., 2014), which
facilitated part of the data analysis in this case study. TWI
was a unit-less value; the larger values represent a relatively
higher tendency for water accumulation (e.g., lowland),

and the smaller values represent a relative relatively lower
tendency (e.g., highland):

TWI = In (t;‘l;,))

In which As was the ratio of catchment area over cell width
in slope direction, and 83 was the slope in the steepest
downslope direction of the terrain (°).

The ECa and TWI surface maps were synthesized and
converted into a vector-based map (i.e., square polygons)
consisting of multiple 3-by-3 m grids to represent the
confined elementary field areas. Each area was subjected
to a pair of ECa and TWI values;. 3-m spatial resolution

was chosen because it was the smallest distance between
two sensor measurements. This map was used to create
irrigation segments according to 62 management scenarios
using the software ArcGIS™ developed by ESRI (2014).
Figure 6 illustrates an irrigation segment from scenario
10°-5 ZC with a color scheme over elementary field areas
showing the variability of ECa. Each confined elementary
field area contained attributes of polygon ID, segment ID,
management ID, ECa, and TWI. This information was stored
as tabular data to estimate yield response and irrigation
management profits using the R programming language (R
Development Core Team, 2016).

Nominal values for assumed conditions

Table 1 lists the nominal values and variables used to
demonstrate the outcomes of the economic assessment. It
should be noted that under no circumstances should these
values be considered as the most certain estimates. These
values were used to represent a specific case of field ECa
and elevation, and, to specify model boundary conditions
for yield response to irrigation, the cost of water and energy,
the price of grain yield, and the cost of the irrigation system.

Note that, the values of C_, ., C... C_., and c,. were based

on the model of the mentioned VRI system from Valley®
Irrigation in 2013. Thus, the actual number may change.
Nevertheless, the economic assessment tool is highly
flexible and can be easily performed with any alternative set
of input values.

Polygon ID Partition ID ManagementID ECa TWI

1265 0 2 15 | 0.33

10°- 5 Zone Control scenario

An indivig
ual fj ne
letd Partition overlapping field sensing data

Figure 6. Example of an irrigation partition from one of the 62 management
scenarios with a color scheme showing ECa.

»
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Model Value Model Value Model Value
variable variable variable

N— 400 mm et 100 mm A 20 ha
WI,, 0 ™I, 1 Cans $100,000
ECa,, 35mS-m™ ECa,,, 65mS - m’ Ce $5,000
Yoo 9t-ha' Yooy Ot-ha” Coe $9,000
VoGm0 € o [Er Y atetoguiow O T+ ha G $2,000
Ce $04mm7-ha? c, $0.5mm™- ha”'  Years 20
py $180 t! AQ 10 mm d 6.17%

12

Table 1. The input values of model variables used in the economic assessment.
Testing of input values

During 2013 and 2014, eighteen plots (approximately 180

m? each) were created to study yield response to irrigation
treatments (Table 2). At these plots, water was applied at
various depths (mm), grain yields of hard red spring wheat
(t-ha-1) were measured, and soil samples were collected.
According to this table, soil ECa was relatively higher at plots
one to eight. Total irrigation amounts for the two experimental
years were very similar. No yield was observed in plots one to
five in both years due to flooding and heavy rainfall; however,
in the remaining plots, the yield in 2014 was higher.

Figure 7 illustrates the relatively higher ECa measurements
across plots one to eight, which coincided with the
conditions of excessive water accumulation due to flooding.
As shown, each experimental plot overlaps approximately
twenty elementary field areas (i.e., 3 m by 3 m), which

20 elementary field areas (i.e., 3 m by 3 m), implying 20
different yield response functions.

Y=21+0.045Q-7.33 x10°Q
Qvmax = 307 mm-yr-!

¥Y=6.33+0045Q-189%104Q

Qvmax = 118 mm-yr-1 EC; [mS-m]
19-35
36 -40

41-43

44 -49
-53
-57
-61
-65
-170

Figure 7. lllustration of eighteen study plots and two simulated yield response
functions.

To evaluate whether the given assumptions could yield
comparable results, a yield simulation was conducted

for the 18 study plots. Under various experimental water
application depths (Table 2), eighteen simulated yields were
calculated using the given field assumptions and spatially
dynamic yield response functions.. Figure 8 illustrates the
correlation between experimental and simulated yields for
the two study years, with R2 values above 0.7, indicating
that the input conditions yielded similar responses to
irrigation. The model successfully distinguished zero-yield
plots (i.e., one to six) where soil ECa values were relatively
higher. The observed experimental yield at plots seven and
eight, however, was inconsistent with the simulated results.
Nevertheless, this result shows that the selected input
values for this example field were effective.

Table 4 summarizes the results of the economic assessment
under 62 irrigation scenarios. Net returns, financial losses,
capital investments, and economic disadvantages of
irrigation management were calculated. The net return

was estimated to be 1,348 ($-yr-1) when each irrigation
segment was measured at 3 m by 3 m. According to the

10
o Yield 2014
=8t O Yield 2013
[
£
=,
% 6 r y=0.55x + 0.87
o RZ=0.73
— Plot 8 - .
™
g 4 " ... %,
£ Plot 7
‘= ) r C@ Cp
g , @O0
3 I y=0.35x+0.6
w R?=0.70
& . Plots 1~6
ﬂ 1 1L L 1
-2 0 2 4 6 8 10

Simulated yield [t-ha]

Figure 8. Correlation between simulated and experimental yields for 18 study plots.

Plot 1 2 3 5 6 7 8 9 0 1 12 13 14 |15 16 17 18
ECa (0-30cm) [dS - m™'] 35 |37 |34 |43 |38 |58 |52 |31 |11 07 |06 |08 |07 |07 |11 07 |13 |31
Irrigation 2013 [mm « yr~'] 76 |76 |102 |127 | 102 |76 |127 |102 | 127 | 102 (102 |76 |127 |127 |76 |102 | 127 |76
Irrigation 2014 [mm - yr-'] 61 61 107 | 152 | 107 | 61 152 | 107 [ 152 | 107 | 107 |61 152 | 152 | 61 107 | 152 | 61

Yield 2013 [t + ha™'] 00 |00 |00 OO |00 |07 |24 |24 |24 (25 |30 |27 |29 |31 |27 |25 |28 |26
Yield 2014 [t - ha'] 00 |00 |00 |00 |00 |09 |24 |42 |41 |42 |44 |43 |43 |43 |45 |41 |40 |39

Table 3. ECa, irrigation treatments, and grain yield of eighteen study plots.
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results, the net return increased with increasing Table 4. Economic assessment of 62 irrigation management scenarios.

levels of irrigation control (water optimization), with

the highest and lowest values being under 2°-30 Scenarios | Zone | Revenues Cost of Error | Cost of Total Cost

technology

ZC and NI, respectively. In other words, intensifying
irrigation management from no to advanced control 2* 100 |2° |10° 2 10

reduced economic losses from 917 to 39 ($-ha'-yr).

UM n/a 1,006 381 309 689
Comparing economic losses between the two angular

increment sizes under ZC management, it was sc n/a 1041 | 1,041 | 346 | 346 324 670 | 670
found that using 2° angular increments could reduce

financial losses by 12%. Although 2°-30 ZC showed zc 2 1IST 11126 236 | 260 ) 336 572 | 597
the lowest economic loss, the optimal management i 3 1193 | 1165 | 192 | 221 343 536 | 564
level was 2°-10 ZC after accounting for the required ' '

capital investment. - 4 1218 | 1186 | 168 | 200 349 517 | 549
Figure 9 illustrates the economic loss, Capital - 5 1,249 | 1209 | 138 178 355 493 533
investment, and economic disadvantage (i.e., the

sum of economic loss and capital investment) as a - 6 1266 | 1220 | 120 | 166 361 481 | 527
function of irrigation control level. The economic loss

decreased sharply from NI to UM when irrigation ) ¢ 1276 | 1232 | O 15 37 478 | 522
practice was introduced, and then continued to . a 1287 | 1238 | 100 | 148 373 473 | 522

decline with increasing levels of VRI control. The
magnitude of decrease in the economic loss was - 9 1295 | 1,246 | 91 141 380 471 | 520

greater under 2° angular control than that of 10°. This

result was anticipated, as irrigation management - 10 1306 | 1254 | 81 133 | 386 466 | 519

under 2° angular control better matched local needs

o . . = 1 1,308 | 1,257 | 78 130 392 470 521
than under 10°, because the irrigation segment area

defined under the former control was 80% smaller - 12 1312 | 1258 | 75 128 398 473 | 526
than that determined under the latter.

= 13 1,319 | 1,265 | 68 122 404 472 526

The economic disadvantage declined with the
introduction of VRI. However, after the optimal - 14 1323 | 1,266 | 63 120 410 474 | 531

VRI 10-control-zones were reached, the economic

. . . . = 15 1,325 | 1,270 | 61 17 417 478 538]
disadvantage increased due to higher capital
investment. This observation was only valid for the ) 16 1328 | 1272 | 59 15 423 482 | 537
cost model of the mentioned VRI technology. As
marketing strategies for parts pricing and technical - 17 1329 | 1272 | 58 14 429 487 | 543
support often vary among manufacturers, the overall

. - 18 1,333 | 1,275 | 54 12 435 489 547

economic outcomes are expected to change when
considering VRI systems other than the one used ) 19 1337 | 1279 | 50 107 a5 491 | 549

in the case study. Generally, irrigation management

involving a greater number of VRI control zones - 20 1339 | 1279 | 48 107 447 495 | 555

becomes economically optimal when the economic

disadvantage (primarily due to capital investment) : 21 1340 | 1281 | 47 106 ) 454 01| 559
assoqated with each added control zoneremains i 2 1341 | 1283 | 45 103 1460 505 | 563
relatively low.
) o ) - 23 1341 | 1283 | 46 104 466 512 | 570
As illustrated in Figure 10, net return was highly
sensitive to the maximum yield, the model boundary N 24 1342 | 1282 | 45 104 472 517 | 576
condition ECa (which defined the field's wet and dry
conditions), the yield-maximizing irrigation amounts - 25 1343 | 1283 | 44 104 478 522 | 582
under dry conditions, and the price of yield. The
. . - 26 1344 | 1283 | 43 103 484 528 | 588
graph showed that when soil water storage potential
(represented Using ECaWwet) or precipitation was - 27 1345 | 1285 | 42 102 491 532 592
relatively higher, the incremental increase of net
return was higher under UM scenario. Regardless of - 28 1347 | 1285 | 40 101 497 537 | 598
management options, implementing irrigation to crops
- 29 1347 | 1,286 | 39 100 503 542 | 603

with high yield, low water demand, and high market

price was a profitable strategy. Within the given range . 30 1348 | 1287 | 39 o9 500 548 | 609
of nominal values, the cost of energy and water did not

influence the net return as much as other variables. . _—
Unit: $ - halyr
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characterizing field heterogeneity. Although

=t==Total costs
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ECa and topographical data as proxies for

soil properties associated with irrigation
management, incorporating additional or
alternative field measurements could help
compare different outcomes. The theoretical
formulation of the crop-water-soil relationship
was found to be highly effective, providing

a universal formula that can be customized
site-specifically based on field measurements.
Using the default field data resolution (3 by 3
m) to generate numerous spatially dynamic
water response functions for the economic
assessment of the 20-ha example field was
not computationally intensive. But a similar

Levels of irrigation control

Figure 9. Costs associated with different levels of irrigation control: NI (no irrigation), UM (uniform

management), SC (VRI speed control), and ZC (VRI zone control)

As indicated in Figure 11, implementing irrigation
management was profitable when the yield price was
greater than 108 $-t-' and/or the maximum yield was higher
than 5 t-ha. s market price and yield of the selected crop
increased, the profitability of VRI Zone control reached up
to $ 200-ha"-yr" higher than that for uniform management.
However, when the minimum attainable yield under dry
conditions exceeded 4 t-ha, applying additional water to
the crop was not an economically viable strategy regardless
of management options.

As for the effect of soil water storage conditions
(represented using by ECa) on profitability, it was shown
that uniform management resulted in no profitability

when ECa at the wettest locations was below 50 mS.m™".
Besides, the four management options would result in an
additional $ 200-ha™" in profitability annually, with ECa
measurements at the driest locations increasing by up to
40%. Moreover, adopting irrigation management for a crop
whose yield-maximizing water requirement in dry locations
was as high as 520 mm annually (including rainfall) remained
economically viable.

Finally, the profitability of irrigation investment fluctuated
widely across management options, with spatial variability

in field characteristics, soil-crop-water relationships, crop
prices, and water and energy costs. The results showed that
increasing the level of irrigation control using an advanced
VRI system appeared to be an excellent approach to improve
water productivity by spatially adjusting application amounts
according to local needs, regardless of environmental

and financial factors. However, in terms of optimizing
irrigation profitability, the economic assessment revealed
that quantifying the value of irrigation management was

an essential component in the economicdecision-making.
Using proximal soil sensing technology to obtain dense
geospatial data at low cost proved an efficient method for

N

evaluation has not been tested for larger fields.

Nevertheless, this generic algorithm for the
water response function was spatially dynamic,
unlike the general empirical approach. The
incorporated algorithms can be further fine-
tuned using crop models, such as AquaCrop, to
improve characterization of a given target field.
Such a test was not yet complete in this study.
Moreover, the results suggested that crop commodity prices
had a much greater impact on irrigation profitability than the
commodity prices of water and energy. This finding might
be underestimated, as the tested range for the commodity
value of natural resources might be smaller than the actual
market fluctuations. Because global political dynamics and
climate highly influence commaodity prices, they should be
closely monitored to reduce long-term financial risks.

Based on these results, it is concluded thatrealizing the

full potential of VRI technology requires an economic
assessment before implementation. The proposed economic
assessment tool effectively incorporated agronomic

and economic factors while adopting VRI technology to
optimize crop irrigation profitability and water management.
The model is flexible, and its architecture accommodates

a range of environmental and economic input parameters.
The comparison of 62 irrigation scenarios using the 20-ha
example field showed the greater benefit of raising VRI
control to the point where the pivot was subdivided into

10 independently operated irrigation control zones. Further
intensification of VRI indicated economic disadvantages,
with relatively high capital investment compared with the
acquired yield and cost benefits. Yet, this result was valid
only under the specific assumptions and input setting.

The advantage of this assessment tool for irrigation
management is its generic approach, which can be
automatically adjusted by the tool based on field conditions.
Further development of this tool includes the evaluation of
applicability under a broader range of field characteristics,
the incorporation of various crop-water-soil relationships,
and the consideration of potential monetary risks. With a
robust economic assessment tool, irrigation managers can
identify investment options, estimate profitability, anticipate
potential financial risks, and achieve operational stability.
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Figure 10. Sensitivity of field revenue to different values of variable input.

Complementary Technologies and Themes to
Precision (Smart) Irrigation

Digital agricultural solutions and smart farming systems
are under development in several countries. A smart
farming system could include various precision agricultural
technologies, including precision irrigation. The smart
farming concept describes a system where smart sensing
and monitoring systems function with information
communication technologies to increase the economic
yield of crop and/or livestock production and optimize farm
inputs, processes, and profits (Wolfert et al. 2017). The
concept extends to the transportation, distribution, and
retail phases of the food supply chain (Nukala et al. 2016;
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Figure 11. Economic benefits of selected irrigation management scenarios over no
irrigation under different field and financial conditions.

Idoje et al. 2021).

Within the smart farming framework, existing
complementary technologies that could facilitate the
integration of control and decision-making for precision
irrigation systems in open fields and in controlled
environments require fast, reliable internet connections.
This is necessary to link farming processes for optimal
water management, reliable sensor network systems that
provide feedback on plant water and nutrient status, cloud
computing systems that enable the collection and access
of real-time data and information, big data analytics for
decision support, and predictive analytics for weather and
markets (Maraveas et al. 2022). The internet of things for

N
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precision agriculture (IoT4Ag) (Kagan et al. 2022) could
enable the monitoring of plant, soil, water, and weather data
and inform data-driven models, and big data analytics that
will employ artificial intelligence (Al) to monitor and predict
water stress (King and Shellie 2016), water quality (Chen et
al. 2020), and control irrigation scheduling (Romero et al.
2012). Big data analytics are a major component in many
ongoing agricultural projects, including the classification

of land cover changes, forecasting rainfall, snow melt and
severe weather events, and estimating evapotranspiration
with limited instrumentation (Kamilaris et al. 2017).

An example of a precision irrigation technology that
integrates different types of sensing systems and data
analytics for irrigation management decision support is
the Irrigation Scheduling Supervisory Control and Data
Acquisition System (ISSCADAS) (Evett et al. 2020)

(Figure 12). The ISSCADAS uses weather data and canopy
temperature data collected throughout a field using a
network of wireless canopy temperature sensors mounted
on a center pivot irrigation system to generate precision
irrigation prescription maps based on the estimation of
plant water stress (O'Shaughnessy et al. 2010). A network
of soil water sensors connected to the internet of things
(IoT) (Thompson et al. 2021) can be used in combination
with canopy temperature sensors to generate precision
irrigation prescription maps based on the estimation of
plant stress and soil water status. The combined use of
canopy temperature and soil water sensors can also improve
precision irrigation management using the ISSCADAS in
humid (Stone et al. 2019) and semi-arid (O’'Shaughnessy

et al. 2020) environments. Al algorithms can be used to
estimate canopy temperatures in situations where canopy
temperatures cannot be measured because the center
pivot cannot move due to a malfunction or cannot traverse
the field within a reasonable amount of time. The canopy
temperatures estimated by Al algorithms can be used to
generate precision irrigation prescription maps based on
plant stress to add redundancy to the ISSCADAS (Andrade
et al. 2022).

While smart farming could lead to more sustainable
agricultural production, there
are barriers to its progress and
adoption. These include limited
accessible and reliable internet
connectivity in rural areas (Mark
et al. 2016; O'Grady et al. 2019;
Strover et al. 2021); upfront
costs for sensor systems, up-
to-date infrastructure for data
transmission, and hardware

Future Needs

Precision irrigation, when properly designed and
implemented, can offer significant benefits for producing
agricultural commodities with reduced inputs and enables
utilizing resources efficiently, which can contribute to the
sustainability of agricultural productivity. This management
strategy can be effective in production fields that have
considerable spatial variability in terms of soil types, soll
properties, slope, and other soil and terrain characteristics. It
can provide significant advantages over traditional irrigation
management strategies, especially in water-limiting regions.
Thus, precision irrigation technology can be one of the
effective tools for using natural resources efficiently to
produce sufficient food and fiber for a rapidly growing world
population, especially in light of climate change, which
negatively impacts agricultural production globally. While
precision irrigation technology has been established and
demonstrated to be beneficial for agricultural production,
this technology is primarily utilized in research and
demonstration platforms. Its adoption in large- or small-
scale agricultural production fields is necessary to achieve
or realize the aforementioned contributions in terms of food
and fiber production with limited input by accounting for
spatial attributes of production fields. Specifically, to realize
the maximum benefits of precision irrigation technology, the
following current and future needs have been suggested:

(i) Precision irrigation technologies are adaptable to
sprinkler, gravity (surface), and microirrigation (including
surface and subsurface drip) methods and can provide
considerable increase in crop water productivity. While
the focus of precision irrigation has been on sprinkler and
microirrigation methods, there are effective and practical
tools that could enable implementation of precision
irrigation in gravity (surface, including furrow, irrigation)
systems, which needs further research and demonstration
as surface irrigation is by far the most dominant irrigation
method globally.

(i) While precision irrigation has shown in research and
demonstration fields that it is a viable technology that

for automated control; lack of
expertise to analyze data; data
governance; and incompatibilities
within the collection of integrated
technologies (Wolfert et al. 2017; El
Bilali and Allahyari 2018; Drewery et
al. 2019).

Figure 12. Schematic of a (1) self-propelled sprinkler irrigation system and a network of sensing systems supporting
its irrigation management. The irrigation system is operated by a (2) control panel. Recommended precision irrigation
prescription maps are generated automatically by an Irrigation Scheduling Supervisory Control and Data Acquisition
System (ISSCADAS). The ISSCADAS runs continuously on (3) an embedded computer mounted next to the control
panel and automatically collects and processes data obtained from a (4) weather station, a (5) network of soil water
sensors reporting data to a (6) node- (7) gateway system connected to the internet of things (1oT), and a (8) wireless

network of canopy temperature sensors distributed along the irrigation system’s frame.
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can contribute to the sustainable utilization of natural
resources for production, well-coordinated efforts to better
understand the impediments for adoption in growers'’

fields and enable the successful implementation of this
technology in large scale production fields are necessary.
Accomplishing these goals requires the participation and
partnership of academicians, researchers, private industry,
state and federal water management agencies, irrigation
practitioners, growers and their advisors, and other
agricultural professionals.

(iii) Because crop physiology, development, and response
to different spatial variability can change with soil type,
climate, management practices, and numerous other
factors, the research, demonstration, and analyses of
viability, as well as the effectiveness of precision irrigation
technology in different soil types, climatic conditions, and
under different types and magnitude of spatial variabilities,
must continue.

(iv) The management zone delineation and associated
algorithms (based on electrical conductivity, and other soil
characteristics variables/indices) and their implementation
in data acquisition systems in terms of irrigation timing
and amount decision-making need further investigation to
enhance the suitability of methods for different cropping
systems, soil, and terrain characteristics.

(v) The use of soil moisture-sensing technologies,
evapotranspiration-based irrigation scheduling, and plant
characteristics-based irrigation scheduling, as well as how
these technologies can be used with precision irrigation
methods to further enhance crop productivity, needs further
research, demonstration, and dissemination.

(vi) Potential design, operational, and management-
related drawbacks, and potential challenges in terms of
implementing precision irrigation technologies under
different climatic, soil ,,and management conditions need
to be openly communicated/disseminated so that these
challenges can be addressed to enhance the effectiveness
of precision irrigation.

(vii) Crop water and nitrogen productivity responses to
precision irrigation (including variable rate irrigation) under
different production and management settings need to

be documented for local conditions, as these relationships
may not be transferable between the locations or regions
that have different crop production environments and
management.

(viii) The benefits and positive impacts and implications of
large-scale adoption, as well as economic and environmental
benefits of precision irrigation technologies, need to

be better documented and effectively communicated

to stakeholders, decision- and policymakers, and all
partners and professionals involved in small- or large-scale
irrigated agricultural production, planning, management,
and forecasting. This need is becoming more critical as
the negative impacts of climate change, limitations in
water resources availability, water quality degradation

for agricultural irrigation, competition for water between

different sectors, and other factors impose (and will
continue to impose) stress on irrigation agriculture to
meet the food and fiber demand of a rapidly growing world
population. Technology development, and perhaps more
importantly, implementation of technologies in production
fields, will definitely aid in mitigating the negative impacts
of climate change and other external factors/challenges on
irrigated crop production and enable the sustainability of
irrigated agricultural production.
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